SYLLABUS OF A MODULE

Polish name of a module	Metodyka i metodologia badań naukowych
English name of a module	Methodology of scientific research
ISCED classification - Code	0619
ISCED classification - Field of study	Computer Science
Languages of instruction	English
Level of qualification:	2
Number of ECTS credit points	3
Examination:	A
Available in semester:	S

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
15	0	15	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Obtaining knowledge in the area of scientific research.
- O2. Familiar with methods of obtaining scientific material, providing its deeply analysis and formulate conclusions.
- O3. Acquisition by students skills to work independently and in a team, develop reports, analyze the results, etc.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of computer architecture and operating systems.
- 2. Basic knowledge of the theory of algorithms and data structures.
- 3. Ability of C++ and Java programming.
- 4. Ability to use different sources of information and technical documentation.
- 5. Ability to work independently and in a group.

6. Ability to correctly interpret and present their own activities.

LEARNING OUTCOMES

- LO 1 has competences to work individually and in a team, has the ability to estimate the time required to perform ordered tasks.
- LO 2 has ordered, theoretically founded knowledge including methods of conducting scientific research.
- LO 3 able to plan and conduct research in the field of simple research problems.

	Number
Lectures	of
	hours
Lect. 1 - The difference between science and engineering	1
Lect. 2 - Current challenges facing science	1
Lect. 3 - Introduction to scientific research methodology	1
Lect. 4 - Selected problems and its analysis (in the area of Artificial	1
Intelligence)	
Lect. 5 - Selected problems and its analysis (in the area of High	1
Performance Computing)	
Lect. 6 - Selected problems and its analysis (in the area of multimedia	1
processing)	
Lect. 7 - Performance metrics of research computation – hardware	1
analysis	
Lect. 8 - Current hardware used in research computation (CPU, GPU,	1
FPGA,)	
Lect. 9 - Performance metrics of research computation – software	1
analysis	
Lect. 10 - Models of algorithm characteristics and design (Roofline,	1
PCAM,)	
Lect. 11 - Analysis of performance of scientific problems	1
Lect. 12 - Analysis of energy consumption of scientific problems	1

MODULE CONTENT

Lect. 13 - Analysis of accuracy results of scientific problems	
Lect. 14 - Hypothesis, solutions and conclusions formulation for given	
problems	
Lect. 15 - Unsolved problems in computer of science	1
	Number
Laboratories	of
	hours
Lab. 1 - Introduction to methodology of scientific research	1
Lab. 2 - Tools (software and resources) for computer science researchers	1
Lab. 3 - Data collection methods in scientific research	1
Lab. 4 - Analysis, profiling and optimization of Artificial Intelligence	1
problems	
Lab. 5 - Analysis, profiling and optimization of High Performance	1
Computing problems	
Lab. 6 - Analysis, profiling and optimization of problems of multimedia	
processing	
Lab. 7 - Hardware analysis – strengths and limitations	
Lab. 8 - Comparison of different hardware solutions between CPU and	
GPU	
Lab. 9 - Algorithm analysis – requirements, bound conditions, methods of	1
development	
Lab. 10 - Roofline model for selected algorithms and architectures	
Lab. 11 - Performance evaluation of scientific computing	
Lab. 12 - Energy consumption of scientific computing	
Lab. 13 - Analysis of results accuracy in scientific computing	
Lab. 14 - Hypothesis, solutions and conclusions formulation for given	
problems	
Lab. 15 - Summary test	1

TEACHING TOOLS

- **1.** multimedial presentations for lectures
- 2. instructions for laboratories
- **3.** wide range of algorithm and programming tools
- 4. workplaces for students equipped with workstations

WAYS OF ASSESSMENT (F - FORMATIVE, S - SUMMATIVE

F1 one exan	n for laboratory
-------------	------------------

F2. – one take-home quiz

S1. – the final grade is based on the knowledge and skills gained from lectures and laboratories

*) warunkiem uzyskania zaliczenia jest otrzymanie pozytywnych ocen ze wszystkich ćwiczeń laboratoryjnych oraz realizacji zadania sprawdzającego

STUDENT'S WORKLOAD

		Average number of	
L.p.	Forms of activity	hours required for	
		realization of activity	
1.	1. Contact hours with teacher		
1.1	Lectures	15	
1.2	Tutorials		
1.3	Laboratory	15	
1.4	Seminar		
1.5	Project		
1.6	Consulting teacher during their duty hours	1	
1.7	Examination		
	Total number of contact hours with teacher:	31	
2.	Student's individual work		
2.1	Preparation for tutorials and tests	10	
22	Prreparation for laboratory exercises, writing	10	
2.2	reports on laboratories	10	
2.3	Preparation of project		
2.4	Preparation for final lecture assessment	10	

2.5	Preparation for examination	
2.6	Individual study of literature	14
	Total numer of hours of student's individual work:	44
	Overall student's workload:	75
Over	all number of ECTS credits for the module	3
Num	ber of ECTS points that student receives in classes	1 24
requiring teacher's supervision:		1.21
Number of ECTS credits acquired during practical		1 1
classes including laboratory exercises and projects :		

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

1. - C. Wohlin et al., Experimentation in Software Engineering, Springer, 2012

2. - E.R Khan et al., Research Methods of Computer Science, Laxmi Publications, 2015

MODULE COORDINATOR (NAME, SURNAME, DEPARTMENT, E-MAIL ADDRESS)

1. Dr hab. inż. Krzysztof Rojek, prof. PCz, krojek@icis.pcz.pl