Kierunek:

Budownictwo

Karta Opisu Przedmiotu

Name of the subject			Subject code		Year / semester			
		s <mark>in Civil Engine</mark> iki w Budownict	•			I	01	
Subject P		Pro	ofile	I	Level of education			
Obligatory		General academic		Full-time, first degree – S1				
		Type of c	lasses					
Lecture	Exercises	Laboratory	Project	Seminar	Exam	EC	ECTS	
30	-	-	30	-	YES		6	
Department conducting subject:	Department of Civil Engineering Tel: +48 (34) 325 02 06 mail: krzysztof.kulinski@pcz.p							
Teachers conducting subject:	PhD. Eng. Aı PhD. Eng. Kı	nna Jaskot zysztof Kulińsk	<i>k</i> i					

I. Ca	rd subject
PURPC	DSE OF THE SUBJECT
C01	Students are introduced in the topics concerning the Theoretical Mechanics in Civil Engineering
C02	Mastering by students the ability to prepare schemes of rod structures, identifying statically determinate and indeterminate systems.
C03	Give the students the ability to prepare systems of equilibrium equations, mastering the rules of internal and external reactions calculation in beam, frame and truss systems.
C04	Give the students the ability to solve reactions and forces in spatial systems.
C05	Give the students the ability to determine the center of gravity for planar and spatial geometric shapes.
PRELI	MINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES
1	Basic knowledge in Engineering Physics
2	Basic knowledge in Engineering Mathematics
EDUCA	ATIONAL EFFECTS:
Knowle	edge: the graduate knows and understands
EK1	Student knows and understands the concepts of Mechanics in Civil Engineering. Understands preparing equilibrium equations and providing equilibrium state for plane and spatial systems. Understands methods of solving internal and external reactions. Knows and understands the basics of determining the center of gravity for planar and spatial geometrical shapes.
Skills: t	the graduate can
EK2	calculate reactions in convergent and arbitrary systems. Can determine reactions in simple and complex beams and in planar frames. Student can solve truss system using the joints and Ritter's method. Moreover, student is able to determine the centers of gravity for planar and spatial shapes. He can also solve spatial and arbitrary force systems and spatial systems.
Social	competence: the student is ready to
EK3	work individually and in a team.
PROG	RAM CONTENT
Туре	of classes - Lecture Number of hours

hours

L12 L13	Center of gravity in planar figures and spatial configurations. Introduction to spatial systems.	2
L9 L10 L11	Analytical and graphical methods for solving truss systems	6
L8	Moment of pair of forces.	2
L7	Moment of force in relation to a given point.	2
L6	Equilibrium of an arbitrary system of forces.	2
L5	Equilibrium of a planar system of forces.	2
L4	The equivalence and syntax of work of forces. The concept of the resultant and the balance of forces.	2
L3	Active and passive forces in civil engineering. Types of supports. Degrees of freedom - releases (hinges, telescopes).	2
L2	Models of bodies in Mechanics. Force and its representation. Concepts of Classical Mechanics.	2
L1	Introduction to basic concepts of Mechanics in Civil Engineering.	2

Туре о	f classes - Project	Number of hours
P1	Introduction to the course. Overview of the credit conditions. Providing list of literature.	2
P2	Assumptions to assignment no. 1 – planar beam. Exemplary complex beam calculations - part I.	2
P3	Exemplary complex beam calculations – part II.	2
Ρ4	Submission of project no. 1 and defense discussion.	2
P5	Assumptions to assignment no. 2 – planar frame. Exemplary planar frame	4
P6	calculations.	
P7	Submission of project no. 2 and defense discussion.	2
P8	Assumptions to assignment no. 3 – planar truss. Planar truss exemplary calculations - part I supporting reactions.	2
P9 P10	Planar truss exemplary calculations – part II normal forces in truss rods using the joint method.	4
P11	Verification of obtained results with the Ritter's method in a given cross- section.	2
P12	Submission of project no. 3 and defense discussion.	2
P13	Assumptions to assignment no. 4 – center of gravity of planar geometrical shape.	2
P14	Center of gravity exemplary calculations.	2
P15	Submission of project no. 4 and defense discussion.	2
	TOTAL:	30

BASIC	BASIC AND ADDITIONAL LITERATURE		
Basic literature:			
1.	Khalfallah S., Structural Analysis 1: Statically Determinate Structures. Wiley-ISTE 2018.		
2.	Hibbeler R. C., <i>Engineering Mechanics – Statics</i> . 12 th edition, Pearson Prentice Hall, New Jersey 2010.		
3.	Beer F. P., Johnston E. R. Jr., Mazurek D. F., Cornwell P. J., Eisenberg E. R.: Vector mechanics for engineers. Statics and dynamics. McGraw-Hill, New York 2010.		

Additional literature:		
1.	Hibbeler R. C., Mechanics of Materials, Pearson, 2017.	
2.	McCormac J. C., Structural Analysis using classical and matrix methods. John Wiley and Sons Inc. 2007.	
3.	Meriam J. L., Kraige L. G., Engineering Mechanics - Statics. John Wiley and Sons 2002.	