SYLLABUS OF A MODULE

Polish name of a module	Termodynamika obiegów cieplnych
English name of a module	Thermodynamic Cycles
ISCED classification - Code	0715
ISCED classification - Field of study	Mechanics and metal trades
Languages of instruction	English
Level of qualification:	2
Number of ECTS credit points	5
Examination:	EW
Available in semester:	А

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
30	30	0	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Students know theory of thermodynamic cycles fundamentals.
- O2. Students acquire skills in thermodynamic cycle calculations.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Fundamentals of mathematics and thermodynamics.
- 2. Fundamentals of thermal machinery principles.
- 3. Capability of using source literature.
- 4. Data analysis and presentation of results.

LEARNING OUTCOMES

- LO 1 The student possesses knowledge on thermodynamic cycles
- LO 2 The student possesses knowledge on fundamentals of thermal machinery
- LO 3 The student has ability to calculate various thermodynamic cycles.

MODULE CONTENT

Type of classes – lecture	Number of hours
Lec 1 – Introduction to thermodynamic cycles. Review of thermodynamics.	
Lec 2 – Classification of thermodynamic cycles in thermal machinery. Energy balance.	2

Thermodynamic parameters. Carnot cycle.	
Lec 3 – Fundamentals of internal combustion engines. Real and theoretical	
thermodynamic process. Otto cycle. Diesel cycle. Sabathe-Seilinger cycle. Overexpanded	6
cycle. Design and practical implementations.	
Lec 4 – Gas turbines. Brayton cycle.	2
Lec 5 – Introduction to steam engines and steam turbines. Power systems applications.	2
Lec 6 - Fundamentals of Clausius-Rankine cycle. H-S and T-S diagrams.	2
Lec 7 - Analysis of Clausius-Rankine cycle with various options. Secondary reheating and	4
regenerative heating in the steam power plant.	4
Lec 8 – Waste heat recovery systems. Applications in use.	4
Lec 9 – Other machinery for heat and power generation. Renewable energy. Geothermal	4
and solar systems. Nuclear power plants.	4
Lec 10 – Heat pumps. Refrigerators.	2
Sum	30
	Number
Type of classes – tutorials	
	hours
Tut 1-2 – Introduction to several computational tools for thermodynamic calculations.	4
Tut 3 – Calculations and Carnot cycle analysis.	2
Tut 4 – Calculations and analysis of Otto cycle.	2
Tut 5 - Calculations and analysis of Diesel cycle.	2
Tut 6 – Calculations and analysis of Sabathe-Seilinger cycle.	2
Tut 7 - Calculations and analysis of overexpanded cycle.	2
Tut 8-10 – Modeling IC engine thermodynamic cycle based on the 0-D model for heat	c
release.	6
i cicase.	
Tut 11-13 - Modelling Clausius-Rankine cycle and its analysis.	6
	2
Tut 11-13 - Modelling Clausius-Rankine cycle and its analysis.	

TEACHING TOOLS

- 1. Lecture with the use of multimedia presentations
- 2. Tutorials of thermodynamic cycles calculation
- **3.** Instructions to classes
- **4.** Own codes and commercial software

WAYS OF ASSESSMENT (F-FORMATIVE, S-SUMMATIVE)

- F1. assessment of the ability to apply the acquired knowledge while doing the exercises
- F2. evaluation of reports on the implementation of exercises covered by the curriculum
- F3. assessment of activity during classes
- ${f S1.}$ assessment of the ability to solve the problems posed and the manner of presentation obtained results pass mark *
- **S2.** assessment of mastery of the teaching material being the subject of the lecture exam

STUDENT'S WORKLOAD

^{*)} in order to receive a credit for the module, the student is obliged to attain a passing grade in all classes as well as in achievement tests.

L.p.	Forms of activity	Average number of hours required for realization of activity
1	. Contact hours with teacher	
1.1	Lectures	30
1.2	Tutorials	30
1.3	Laboratory	0
1.4	Seminar	0
1.5	Project	0
1.6	Examination	3
Total number of contact hours with teacher:		68
2	. Student's individual work	
2.1	Preparation for tutorials and tests	10
2.2	Preparation for laboratory exercises, writing reports on laboratories	0
2.3	Preparation of project	0
2.4	Preparation for final lecture assessment	0
2.5	Preparation for examination	10
2.6	Individual study of literature	7
	Total number of hours of student's individual work:	27
	Overall student's workload:	95
Overall number of ECTS credits for the module		5 ECTS
Number of ECTS points that student receives in classes requiring teacher's supervision:		2.52 ECTS
	er of ECTS credits acquired during practical classes including laboratory ses and projects:	1.2 ECTS

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Cengel Y, Boles M, Thermodynamics: An Engineering Approach, McGraw-Hill Education; 8 edition, 2014
- 2. Moran JN, Shapiro HN, Principles of Engineering Thermodynamics, John Wiley & Sons Inc, 2015
- 3. Mayhew Y, Rogers GFC, Mayhew YR, Engineering Thermodynamics : Work and Heat Transfer, Longman, Pearson Education Limited, 1996

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

Prof. dr hab. inż. Stanislaw Szwaja, stanisław.szwaja@pcz.pl