SYLLABUS OF A MODULE

Polish name of a module	Podstawy spalania	
English name of a module	Combustion	
ISCED classification - Code	0715	
ISCED classification - Field of study	Mechanics and metal trades	
Languages of instruction	English	
Level of qualification:	2	
Number of ECTS credit points	5	
Examination:	EW	
Available in semester:	S	

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
30	30	0	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Students know theory of combustion fundamentals.
- O2. Students acquire skills in combustion issues calculations.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Fundamentals of mathematics and thermodynamics.
- 2. Fundamentals of thermal machinery principles.
- 3. Capability of using source literature.
- 4. Data analysis and presentation of results.

LEARNING OUTCOMES

- LO 1 The student possesses knowledge on combustion
- LO 2 The student possesses knowledge on fundamentals of construction and operation of thermal machinery
- LO 3 The student has ability to determine basic parameters in various combustion processes.

MODULE CONTENT

Type of classes – lecture	Numbe of hour
Lec 1 – Fundamental laws in thermodynamics and combustion science.	1
Lec 2-3 – Combustion definition. Premixed and diffusion combustion. Deflagration and	
detonation. Global reaction of combustion. Stoichiometry. Flammability limits.	2
Enthalpy. UHV, LHV. Fuel specifications.	_
Lec 4-5 – Thermochemistry. Energy conservation law. Combustion at constant pressure	
and constant volume. Adiabatic flame temperature. Reactants and products.	2
Chemical equilibrium. Dissociation. Gibbs function. Equilibrium constant.	
Lec 6 – Introduction to collision theory. Elementary reactions and rates.	1
Lec 7-8 – Combustion mechanism. types of elementary reactions. Time scales.	2
Lec 9-10 – Selected combustion mechanisms: H ₂ -O ₂ , CO-O ₂ , methane, NO _x formation.	2
Lec 11-13 – Laminar premixed combustion. Description. Simplified analysis. Flame	
analysis in the Bunsen burner. Flame thickness. Laminar flame speed.	3
Combustion in the spark ignited engine.	
L 14 – Ignition. Theory and models by Semenov and Frank-Kamenetski.	1
L 15-16 – Laminar diffusion combustion. Flame length. Soot formation.	2
Lec 17 – Introduction to turbulent combustion.	1
Lec 18-19 – Combustion of liquid fuels. Simplified model of droplet evaporation and	2
combustion. Combustion in the compression ignition engine.	
Lec 20-21 – Solid fuel combustion. Models of carbon particle combustion. Examples. Coal	2
burner description.	_
Lec 22-23 – Detonation combustion. Rankine-Hugoniot curve. Structure of detonation	2
wave. Detonation speed.	_
Lec 24 – Measurements in combustion.	1
Lec 25-26— Toxic products of combustion. Regulations and limits for toxic emissions.	2
Lec 27-28 – Methods for toxic substances removal. Pretreatment and after treatment. 3-	2
way catalytic converter. SCR and NSCR. PM traps.	_
Lec 29-30 – Trends in clean combustion technologies.	2
Suma	30
Type of classes – tutorial	Numbe
	of hou
TUT 1-4 – Calculations of combustion process of gaseous, liquid and solid fuels. Reaction	4
rate. Mole and mass fractions. Air-to-fuel stoichiometric ratio. Equivalence ratio.	•
Fut 5-8 – Calculations of enthalpy of reaction, heat of combustion, lower heating value	4
LHV) and higher heating value (HHV) of fuels.	_
Tut 9-10 – Thermodynamic equilibrium with species dissociation.	2
Fut 11-14 – Calculations of adiabatic flame temperature at C _P and C _V .	4
Fut 15-18 – Calculations of volumetric composition of the wet and dry flue gases.	4
Tut 19-22 – Determination of energy losses and boiler efficiency. Energy and exergy	4
balance.	
Tut 23 -26 – Solid particle combustion – one film model.	4
	2
Tut 27-28 – Calculations of laminar flame speed	
Tut 27-28 – Calculations of laminar flame speed. Tut 29-30 – Calculation of detonation flame velocity.	2

TEACHING TOOLS

1. – Lecture with the use of multimedia presentations	
2. – Tutorials of combustion calculation	
3. – Instructions to classes	
4. – Own codes and commercial software	

WAYS OF ASSESSMENT (F-FORMATIVE, S-SUMMATIVE)

- F1. assessment of the ability to apply the acquired knowledge while doing the exercises
- F2. evaluation of reports on the implementation of exercises covered by the curriculum
- **F3.** assessment of activity during classes
- ${f S1.}$ assessment of the ability to solve the problems posed and the manner of presentation obtained results pass mark *
- **S2.** assessment of mastery of the teaching material being the subject of the lecture exam

STUDENT'S WORKLOAD

L.p.	Forms of activity	Average number of hours required for realization of activity			
1	1. Contact hours with teacher				
1.1	Lectures	30			
1.2	Tutorials	30			
1.3	Laboratory	0			
1.4	Seminar	0			
1.5	Project	0			
1.6	Examination	3			
Total number of contact hours with teacher:		68			
2. Student's individual work					
2.1	Preparation for tutorials and tests	17			
2.2	Preparation for laboratory exercises, writing reports on laboratories	0			
2.3	Preparation of project	0			
2.4	Preparation for final lecture assessment	0			
2.5	Preparation for examination	20			
2.6	Individual study of literature	20			
Total number of hours of student's individual work:		57			
Overall student's workload:		125			
Overall number of ECTS credits for the module		5 ECTS			
Number of ECTS points that student receives in classes requiring teacher's supervision:		2.52 ECTS			
Number of ECTS credits acquired during practical classes including laboratory exercises and projects:		1.20 ECTS			

^{*)} in order to receive a credit for the module, the student is obliged to attain a passing grade in all classes as well as in achievement tests.

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Cengel Y, Boles M, Thermodynamics: An Engineering Approach, McGraw-Hill Education; 8 edition, 2014
- 2. Moran JN, Shapiro HN, Principles of Engineering Thermodynamics, John Wiley & Sons Inc, 2015
- 3. Mayhew Y, Rogers GFC, Mayhew YR, Engineering Thermodynamics: Work and Heat Transfer, Longman, Pearson Education Limited, 1996
- 4. Borman GL, Ragland K.M.: Combustion Engineering, McGraw Hill, 1998
- 5. Drysdale D, An introduction to fire dynamics, New York, Wiley&Son 1990
- 6. Glassman I, Yetter R.A.: Combustion, Academic Press, 2008
- 7. Turns S, An Introduction to Combustion: Concepts and Applications, McGraw-Hill, 2000
- 8. Warnatz J, Maas U, Dibble RW, Combustion: Physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, Springer 2001

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

Prof. dr hab. inż. Stanisław Szwaja, stanislaw.szwaja@pcz.pl