SYLLABUS OF A MODULE

Polish name of a module	Teoria gier i decyzji
English name of a module	Theory of games and decisions
ISCED classification	0541
ISCED classification – Field of study	Mathematics
Languages of instruction	English
Level of qualification	Second degree
Number of ECTS credit points	6
Examination	EW
Available in semester	А

Number of hours per semester:

Lecture	Tutorial	Laboratory	Seminar	Project	Others
30 E	0	30	15	0	0

MODULE DESCRIPTION

Module objectives

- O1. To provide students with a foundation to normative decision theory, especially the theory of games, and equip them with basic mathematical concepts and tools that are used to analyze and solve decision problems.
- O2. To present various and sometime unexpected real-world applications of this abstract mathematical theory.
- O3. To equip students with knowledge which is sufficient to recognize and assess archetypal decision-making situations in complicated real-world settings.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Basic probability theory, basic linear algebra, general mathematical maturity.

LEARNING OUTCOMES

- LO~1 The student characterizes the theoretical and practical importance of the axioms, definitions and theorems occurring in the normative decision theory .
- LO 2 Student lists the most important classes of models appearing in the theory, and makes appropriate and varied interpretations. He/she recognizes archetypal decision-making situations in exemplary real-world decision problem settings.
- LO 3 Student explains different key concepts of solutions to the game problems. He/she explains the practical consequences of using particular concept of a solution. Student applies the theory to solve basic/classical problems in exemplary real-world settings.

MODULE CONTENT

Type of classes – Lectures		Number of
		hours
Lect. 1	Overview of decision theory - introduction.	
	Behavioral vs. normative theory. Classification	2
	of decision problems.	
Lect. 2,3	Linear programming tasks as problems of	
	decision making under certainty. Decision	3
	making under risk: stochastic programming and	3
	chance-constrained programming.	
Lect. 3,4	Fundamentals of the utility theory. Axioms of	
	the preference relation. Utility function: basic	3
	concept and theorems	
Lect. 5	Extensive-form games. The notion of a	2
	strategy.	-
Lect. 6	Normal-form games. Matrix games. Various	2
	concepts of solutions.	-

Lect. 7,8	Zero-sum two-person games. Von Neumann		
	minimax theorem.	4	
Lect. 9	Cooperative vs. non-cooperative games.		
	"Prisoner dilemma" problem and its various	2	
	interpretations.		
Lect. 10	Two-person cooperative games. Nash		
	bargaining axioms and bargaining–problem	2	
	solution.		
Lect. 11-12	Duopoly analysis. Stackelberg games and	4	
	repeatable games	4	
Lect. 13-15	Selected problems in contemporary decision-	6	
	making theory.	U	
Type of classes-	- Laboratory	Number of	
Type of classes—	Laboratory	hours	
L. 1	Introduction. Matrices and vectors. Discrete	2	
	probability distributions.		
L. 2,3	Decision making with the help of mathematical	4	
	programming models		
L. 4	Preferences and utility function.	2	
L. 5	Games in the extensive-form. Strategies.	2	
L. 6	Matrix games - various concepts of solutions.	2	
L. 7	Analysis of students achievments with	2	
	discussion		
L. 8	Zero-sum matrix games. Examples. Saddle	2	
	points.		
L. 9	Mixed strategies - the concept and the payoff.	2	
L. 10	The Solution of a zero-sum game in mixed	2	
	strategies.		
L. 11	Cooperative games - exemplary analysis.	2	
L. 12	Computing arbitration pairs.	2	
L. 13	Contemporary decision-making problems - 1	2	
L. 14	Contemporary decision-making problems - 2	2	

L. 15	Analysis of students achievments with	2
	discussion	
Type of classes-	seminars	Number of
Topics of the sen	ninars are generally connected with various real-	hours
world applications	s of the decision-making theory. During each	
seminar students	present some examples of such applications	
along with their for	mal models and solutions.	
Sem. 1	Introduction	1
Sem. 2,3,4,5,6	Single-person decisions, including the Lagrange	5
	method, as well as important classes of linear	
	programming problems	
Sem.	Sequential games	2
7,8,		
Sem.	N-person games including coalition games and	6
9,10,11,12,13,14	allocation rules	
Sem. 13	Final discussion on seminar topics	1

TEACHING TOOLS

1.	multimedia presentations
2.	electronic lecture notes
3.	problem sets for students
4.	traditional face-to-face, blackboard supported tutorials

WAYS OF ASSESSMENT (F-FORMATIVE, S-SUMMATIVE

- F1. assessment of student's activity (during all types of classes)
- F2. assessment of the correctness of solutions to given problems (during tutorials)
- F3. assessment of the quality of presentation of acquired knowledge and skills (during tutorials and seminars)
- S1. assessment of problem-solving skills a **report** containing complete solutions to problems from Problem Sets given during classes **plus achievement test**

- S2. assessment of the degree to which the teaching material is known and understood by student **open-book exam**
- F1. assessment of student's activity (during all types of classes)

STUDENT'S WORKLOAD

		Average number of
L.p.	Forms of activity	hours required for
		realization of activity
1.	Contact hours with teacher	
1.1	Lectures	30
1.2	Tutorials	0
1.3	Laboratory	30
1.4	Seminar	15
1.5	Project	0
Total number of contact hours with teacher:		75
2	. Student's individual work	
2.1	Preparation for tutorials and tests	0
2.2	Preparation for laboratory exercises, writing reports	26
2.2	on laboratories	20
2.3	Preparation of project	0
2.4	Preparation for final lecture assessment	0
2.5	Preparation for examination	11
2.6	Individual study of literature	38
	Total numer of hours of student's individual work:	75
	Overall student's workload:	150
Over	all number of ECTS credits for the module	6
Num	ber of ECTS points that student receives in classes	3
requi	ring teacher's supervision:	

^{*)} warunkiem uzyskania zaliczenia jest otrzymanie pozytywnych ocen ze wszystkich ćwiczeń laboratoryjnych oraz realizacji zadania sprawdzającego

Number of ECTS credits acquired during practical classes	1.2
including laboratory exercises and projects :	1,2

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

RECOMMENDED readings (all available at various internet book-shops and libraries):

Morris P., Introduction to game theory, Spriger-Verlag 1994

Webb J. N., Game Theory: Decisions, Interaction and Evolution, Springer Verlag, London, 2007

Lindgren B.W., Elements of decision theory, Macmillan, London, 1971

Luce D. R., Raiffa H., Games and decisions; introduction and critical survey, Wiley, New York, 1957.

ADDITIONAL readings:

Rasmusen E., Games And Information, An Introduction To Game Theory, Blackwell Publishers Inc., Oxford, UK,, 2007

Geçkil II. K. Anderson, P.L , Applied game theory and strategic behavior, Taylor and Francis Group, 2010

Osborne M.J., Rubinstein A., A Course in Game Theory, MIT Press, 1994.

Hargreaves-Heap S.P., Varoufakis Y., Game Theory-A Critical Introduction, Taylor & Francis e-Library, London, New York 2003

Journal-papers devoted to various aspects of contemporary decision-making theory - provided for students during classes

MODULE COORDINATOR (NAME, SURNAME, INSTITUTE, E-MAIL ADDRESS)

1. dr hab. inż. Andrzej Grzybowski, prof. PCz, andrzej.grzybowski@pcz.pl