SYLLABUS OF A MODULE

Polish name of a module	Sieci neuronowe i uczenie maszynowe
English name of a module	Neural networks & machine learning
ISCED classification - Code	0619
ISCED classification - Field of	Information and Communication
study	Technologies (ICTs), not elsewhere
	classified
Languages of instruction	English
Level of qualification:	2
Number of ECTS credit points	5
Examination:	A
Available in semester:	A

Number of hours per semester:

Lecture	Tutorial	Laboratory	Seminar	Project	Others
30	15	0	0	30	0

MODULE DESCRIPTION

Module objectives

- O1. Introducing the students to the basic methods of neural networks and machine learning.
- O2. Obtaining by the students the practical skills in solving various problems by making use of neural networks and machine learning.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. The knowledge in the field of the mathematics.
- 2. The basic knowledge in the field of the mathematical statistics.
- 3. The basic knowledge in the field of probability theory.
- 4. The basic knowledge and skills in computer programming.
- 5. The skills to use different sources of information and technical documentation.

- 6. The skills of working alone and in the group.
- 7. The skills of correct interpretation and presentation of his/her own activity.

LEARNING OUTCOMES

- LO 1 Students possess the basic theoretical knowledge in the field of modeling, simulation and classification by making use of machine learning and neural networks.
- LO 2 Students are able to solve various problems of pattern recognition, approximation and prediction.
- LO 3 Students are able to use the modem methods for modeling different types of systems.
- LO 4 Students are familiar with principles of computational intelligence.

MODULE CONTENT

	Number
Type of classes – Lectures	of
	hours
Neuron and its models, structure and functioning of a single neuron,	
perceptron	
Adaline model, Sigmoidal neuron model, Hebb neuron model	
Backpropagation algorithm, Backpropagation algorithm with momentum	
term	
Variable-metric algorithm , Levenberg-Marquardt algorithm, Recursive	2
least squares method	
Hopfield neural network , Hamming neural network	2
BAM network , Self-organizing neural networks with competitive learning,	
WTA neural networks, WTM neural networks, ART neural networks	
Radial-basis function networks. Probabilistic neural networks 2	2
Data clustering methods- HCM algorithm, FCM algorithm. PCM algorithm	2
Gustafson-Kessel algorithm, FMLE algorithm. Clusteringvalidity	2
measures	
Support vector machines for classification 2	2

Support vector machines for regression 2	2
Decision trees- ID3	
Decision trees- C4.5	
Fuzzy decision trees	
Principal Component Analysis	
	Number
Type of classes– Tutorial	of
	hours
Neuron and its models, structure and functioning of a single neuron,	1
perceptron	
Adaline model, Sigmoidal neuron model, Hebb neuron model	1
Backpropagation algorithm, Backpropagation algorithm with momentum	1
term	
Variable-metric algorithm, Levenberg-Marquardt algorithm, Recursive	1
least squares method	
Hopfield neural network , Hamming neural network	
BAM network , Self-organizing neural networks with competitive learning,	
WTA neural networks, WTM neural networks, ART neural networks	
Radial-basis function networks, Probabilistic neural networks	
Data clustering methods- HCM algorithm, FCM algorithm. PCM algorithm	1
Gustafson-Kessel algorithm, FMLE algorithm. Clustering validity	
measures	
Support vector machines for classification	1
Support vector machines for regression	
Decision trees- ID3	
Decision trees- C4.5	
Fuzzy decision trees	
Principal Component Analysis	
	Number
Type of classes– Laboratories	of
	hours
Designing multilayer neural network	2
Designing Hopfield neural network	2

Designing Hamming neural network	2
Designing WTA neural network	2
Designing radial- basis neural network	2
Designing probabilistic neural network	2
Designing decision trees ID3	2
Designing decision trees C4.5	2
Designing fuzzy decision trees	2
Designing system for classification using support vector machines	2
Designing system for regression using support vector machines	2
Solving the problem of clustering using FCM algorithm	2
Solving the problem of clustering using PCM algorithm	2
Solving the problem of clustering using Gustafson-Kessel algorithm	2
Solving the problem of dimension reduction	2

TEACHING TOOLS

1. – lectures using multimedia presentations

2. – exercises in the form of solving by students a problems posed in the time of the lectures

lectures

3. – project classes – presentation by students the progress in the tasks

WAYS OF ASSESSMENT (F - FORMATIVE, S - SUMMATIVE

F1. – assessment of preparation for laboratory exercises

F2. – assessment of the ability to apply acquired knowledge during laboratory exercises and projects

F3. – assessment of reports

F4. – assessment of activity during classes

S1. – assessment of the ability to solve the posed problems and the method of presentation of the obtained results - credit for the grade

S2. – assessment of mastery of the lecture material - passing the lecture (or exam)

*) warunkiem uzyskania zaliczenia jest otrzymanie pozytywnych ocen ze wszystkich ćwiczeń laboratoryjnych oraz realizacji zadania sprawdzającego

STUDENT'S WORKLOAD

		Average number of	
L.p.	Forms of activity	hours required for	
		realization of activity	
1.	Contact hours with teacher		
1.1	Lectures	30	
1.2	Tutorials	15	
1.3	Laboratory	0	
1.4	Seminar	0	
1.5	Project	30	
	Total number of contact hours with teacher:	75	
2.	Student's individual work		
2.1	Preparation for tutorials and tests	11	
22	Prreparation for laboratory exercises, writing	0	
	reports on laboratories	, , , , , , , , , , , , , , , , , , ,	
2.3	Preparation of project	15	
2.4	Preparation for final lecture assessment	10	
2.5	Preparation for examination	0	
2.6	Individual study of literature	14	
	Total numer of hours of student's individual work:	50	
	Overall student's workload:	125	
Overall number of ECTS credits for the module		5	
Number of ECTS points that student receives in classes		3	
requi	equiring teacher's supervision:		
Num	ber of ECTS credits acquired during practical classes	asses	
including laboratory exercises and projects :		1,0	

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

Leszek Rutkowski, Computational Intelligence, Springer, 2008	
Shai Shalev-Shwartz, Shai Ben-David, Understanding Machine Learning: From	
Theory to Algorithms, Cambridge University Press, 2014	
Ethem Alpaydin, Introduction to Machine Learning, M i T Press, 2014	

MODULE COORDINATOR (NAME, SURNAME, INSTITUTE, E-MAIL ADDRESS)

Prof. dr hab. inż. Rafał Scherer, rafal.scherer@pcz.pl