SYLLABUS OF A MODULE

Polish name of a module	Optymalizacja w projektowaniu inżynierskim
English name of a module	Optimisation in engineering design
ISCED classification - Code	0713
ISCED classification - Field of study	0713
Languages of instruction	English
Level of qualification:	1 – BSc (EQF 6)
Number of ECTS credit points	6
Examination:	Α
Available in semester:	Y

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
30	0	30	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. To get knowledge on fundamentals of optimisation methods together with their application to engineering design problems.
- O2. To develop skills of application of optimisation methods in practical problems.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Fundamentals of calculus
- 2. Knowledge of vector calculus and linear algebra.
- 3. Capability of using of source literature.
- 4. Ability of individual work and collaboration in a group.

LEARNING OUTCOMES

- LO 1 Knowledge on optimisation methods in engineering design
- LO 2 Capability of using of optimisation methods in engineering desing
- LO 3 Capability of interpretation and analysis of research results

MODULE CONTENT

	Number
Type of classes – Lecture	of
	hours
Lec 1-2 - Introduction to optimisation in engineering design. Fundamental	2
concepts in optimisation and optimisation methods.	2
Lec 3-6 - Introduction to numerical tools for solution of optimisation	4
problems. AMPL.	4
Lec 7-8 - Direct methods and "black box" optimisation. One-dimensional	2
elimination methods.	2
Lec 9-12 - Nelder-Mead method and its applications.	4
Lec 13-16 - Application of direct methods to optimisation of power plants	4
and thermal cycles.	4
Lec 17-20 - Multiobjective optimisation. Pareto optimality.	4
Lec 21-24 - Computational fluid dynamics in optimisation (CFD-O).	4
Lec 25-26 - Application of CFD-O to the design of wind turbines.	2
Lec 27-30 – Artificial neural networks and genetic algorithms in	4
optimisation.	4
Sum	30
	Number
Type of classes– Laboratory	of
	hours
Lab 1-2 - Formulation of engineering design problems as optimisation	1
problems.	•
Lab 3-4 – Application of AMPL to optimisation problems.	4
Lab 5-6 – Introduction to numerical tools for optimisation problems.	3
Lab 7-8 – Application of elimination methods to optimisation of thermal	3
systems.	3

Lab 9-10 – Application of Nelder-Mead method to optimisation of thermal systems.	4
Lab 11-12 — Optimisation of multi-stage compressors with AMPL.	4
Lab 13-14 – Optimisation of heat exchangers with AMPL.	3
Lab 15 – Multiobjective optimisation of heat exchangers.	4
Lab 15 – Optimisation of systems with a solar collector.	4
Sum	30

TEACHING TOOLS

4		Lectu	ror	\0+00
ш	- 1	ヒせしには	ıeı	いいにつ

- 2 AMPL Manual
- 3 PC workstations with the optimisation and design software (AMPL, C++, Octave)

WAYS OF ASSESSMENT (F-FORMATIVE, S-SUMMATIVE

- **F1.** assessment of preparation for laboratory exercises
- **F2.** assessment of the ability to apply the acquired knowledge while doing the exercises
- **F3.** evaluation of reports on the implementation of exercises covered by the curriculum
- **F4.** assessment of activity during classes
- **S1.** assessment of the ability to solve the problems posed and the manner of presentation of the

obtained results - pass mark *

S2. - assessment of mastery of the teaching material – the final practical problem

STUDENT'S WORKLOAD

		Average number of		
L.p.	Forms of activity	hours required for		
		realization of activity		
Contact hours with teacher				
1.1	Lectures	30		

^{*)} in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

1.3Laboratory301.4Seminar01.5Project01.6Examination0Total number of contact hours with teacher:602.Student's individual work				
1.5 Project 0 1.6 Examination 0 Total number of contact hours with teacher: 60				
1.6 Examination 0 Total number of contact hours with teacher: 60				
Total number of contact hours with teacher: 60				
2. Student's individual work				
2.1 Preparation for tutorials and tests 20				
Preparation for laboratory exercises, writing 20				
reports on laboratories				
2.3 Preparation of project 0				
2.4 Preparation for final lecture assessment 0				
2.5 Preparation for the final test 20				
2.6 Individual study of literature 30				
Total number of hours of student's individual work: 90				
Overall student's workload: 150				
Overall number of ECTS credits for the module 6 ECTS				
Number of ECTS points that student receives in classes 2.4 ECTS				
requiring teacher's supervision:				
Number of ECTS credits acquired during practical 2.0 ECTS				
classes including laboratory exercises and projects:				

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- Rao S.: Engineering optimization. A Wiley-Interscience Publication John & Sons, Inc. New York 1996
- 2. Baldick R.: Applied optimization. Cambridge University Press. 2006
- 3. Gill P.E.: Practical optimization. Academic Press, New York, 2000
- 4. Thevenin D.: Optimization and computational fluid dynamics. Springer-Verlag, 2008
- 5. Fourer R. et al: The AMPL book. AMPL Optimization Inc. 2003

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

dr hab. inż. Maciej Marek, maciej.marek@pcz.pl