Name of the subject:				
Computer Designing of the Metal Forming Processes				
Course: Code of subject:				
Metallurgy			M2.G.D2.5	
Type of subject:	Level of study:	Form of study:	Year: II	
specialization	II level	intramural studies	Semester: IV	
Course type:		Number of hours/week:	Number of points:	
Lecture, Lab., Seminar, Project		1, 1, 0, 0, 0	3 ECTS	

GUIDE TO THE SUBJECT

I CARD OF SUBJECT

AIM OF SUBJECT

- C1.Knowledge of selected numerical methods used in solving problems of modelling metal forming processes.
- C2. Knowledge selected application examples of numerical modelling of forming processes

PREREQUISITES FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCE

- 1. Knowledge of mathematics in the field of differential equations, integrals, and of operator.
- 2. Knowledge of the theoretical basis of metal forming processes.
- 3. Knowledge of the metal forming processes technology.
- 4. Ability to work individually and in a group.
- 5. Ability to use of literature sources and Internet resources.

EFFECTS OF LEARNING

- EK 1 The student knows the numerical methods applied to computer-aided design work in elementary plastic forming of metals.
- EK 2 The student can apply advanced numerical methods for modelling of metal forming processes.
- EK 3 The student can use numerical methods to solve the basic technological problems.
- EK 4 The student can model the technological processes.
- EK 5 The student can use computer-aided design technology of metal forming processes based on data obtained by computer simulation.

COURSE CONTENT

Course type - Lecture

W 1 2 Finite Element Method (FEM) – introduction	2 h
W 3 4 Plastometric tests and approximation of the results	2 h
W 4 5 Approximation of plastometric tests results using the program "Reoroll"	2 h
W 78 – Mathematical modeling of three-dimensional deformation of the metal during groove-	2 h
rolling.	
W 9 10 – The structure of the three-dimensional computer program to numerical modelling of	2 h
metal forming processes Forge2011®	
W 11 - Numerical modelling of the rolling process of bimetallic rods	1 h
W 12 - Numerical modelling of the rolling process of ribbed bimetallic rods	1 h
W 13 14 - Numerical modelling of the ribbed rods rolling process with the longitudinal band	2 h
separation	
W 15 - Numerical modelling of microstructure evolution during rolling processes	1 h

TEACHING TOOLS

1. Lecture using a means of audiovisual

METHODS OF EVALUATION (F - FORMING, P - SUMMARY)

P1 - assessment of mastery of the material that is the subject of theoretical lectures - final test

STUDENT WORKLOAD

Form of activity Average number to realize the activity		ours
Contact hours with the teacher	15W 15L →30	
Getting acquainted with the literature	→45	
Consultation	→15	
Sum	Σ 90	
The total number of ECTS points of course	3 E	CTS

LITERATURE

- 1. Dyja H., Mróz S., Rydz D.: Technologia i modelowanie procesów walcowania wyrobów bimetalowych. Politechnika Częstochowska, Prace Naukowe Wydziału Inżynierii Procesowej, Materiałowej i Fizyki Stosowanej, Seria: Metalurgia Nr 33, Częstochowa 2003
- **2.** Mróz S.: Proces walcowania prętów z wzdłużnym rozdzielaniem pasma, Wydawnictwo Politechniki Częstochowskiej, Seria: Monografie nr 138, Częstochowa 2008.
- 3. Pietrzyk M., Metody numeryczne w przeróbce plastycznej metali, Skrypt AGH, Kraków 1992.
- **4.** Morawiecki M., Sadok L., Wosiek E., Przeróbka plastyczna podstawy teoretyczne, Śląsk, Katowice 1986.
- **9.** Danchenko V., Dyja H., Lesik L., i inni : Technologia i modelowanie procesów walcowania w wykrojach, Wyd. P.Cz. Seria: Metalurgia Nr 28, Częstochowa 2002

PROWADZĄCY PRZEDMIOT (IMIĘ, NAZWISKO, ADRES E-MAIL)

- 1. dr hab. inż. Sebastian Mróz, prof. PCz mroz@wip.pcz.pl
- 2. dr inż. Piotr Szota, pszota@wip.pcz.pl

MATRIX EFFECTS OF EDUCATION

Efekt kształcenia	Odniesienie danego efektu do efektów zdefiniowanych dla całego programu (PEK)	Cele przedmiotu	Treści programowe	Narzędzia dydaktyczne	Sposób oceny
EK1	K_W01, K_W04, K_W05, K_U09	C1	W1, W2, W3, W4, W5	1	P1
EK2	K_W01, K_W04, K_U09	C2	W6,	1	P1
EK3	K_W02, K_W04	C2	W7	1	P1
EK4	K_W02, K_W04	C2	W8	1	P1
EK5	K_W02, K_W04	C2	W9, W10,	1	P1

 ${\sf EK}$ 5 – The student can use computer-aided design technology of metal forming processes based on data obtained by computer simulation.

II. FORM OF EVALUATION - DETAILS

	Mark 2	Mark 3	Mark 4	Mark 5
EK1 The student knows the numerical methods applied to computer-aided design work in elementary plastic forming of metals	The student can not name and describe any numerical methods applied to computeraided elementary design work in metal forming of metals	The student can name and describe two numerical methods applied to computer- aided elementary design work in metal forming of metals	The student can name and describe more then two numerical methods applied to computeraided elementary design work in metal forming of metals	The student can name and describe more then two numerical methods applied to computer-aided elementary design work in metal forming of metals and can their practical application in metal forming processes
EK2 The student can apply advanced numerical methods for modelling of metal forming processes	nrohlomo	The student can apply two numerical method to solve selected technological problems	The student can name and describe the use of numerical methods to solve selected technological problems, but has difficulty applying them to the analysis of data	The student can name and describe the use of numerical methods to solve selected technological problems, and applying them to the analysis of data
EK3 The student can use numerical methods to solve the basic technological problems	The student can not use numerical methods to solve the basic technological problems	The student can describe the selected technological processes and describe a model for one process	The student can describe the selected technological processes and describe a model for two processes	The student can describe the selected technological processes, describe a model for two processes and develop an algorithm

EK4	The student can not	The student can develop	The student can model	The student can model
The student can model the technological	model any technological	a computer model for	the selected	the selected
	processes	thermo-mechanical	technological process	technological process
processes	·	modeling of the selected		with making a complete
processes		technological process		analysis of the results
EK5	The student can not use	The student can use	The student can use	The student can use
The student can use	computer-aided design	computer-aided design	computer-aided design	computer-aided design
computer-aided design	technology of metal	technology of metal	technology of groove-	technology of groove-
technology of metal	forming processes	forming processes	rolling process based on	rolling process and
forming processes	based on data obtained	based on data obtained	data obtained by	make use of quantitative
based on data obtained	by computer simulation	by computer simulation	computer simulation	tools wear based on
by computer simulation				data obtained by
by computer simulation				computer simulation

III. OTHER USEFUL INFORMATION ABOUT THE SUBJECT (www.wip.pcz.pl)

- 1. Information about the location event venue course according to the information on the www.wip.pcz.pl.
- 2. Term course (day of week / time) according to the plan which is stated on the www.wip.pcz.pl.
- 3. Consultation of the course (hours + place) according to the information on the www.wip.pcz.pl.