COURSE GUIDE

Subject name	Introduction to automation of production processes
Course of study	Quality and Production Management
The form of study	Full-time
Level of qualification	First
Year	III
Semester	V
The implementing entity	Department of Management Information Systems
The person responsible for preparing	dr hab. inż. Waldemar Jçdrzejczyk, Prof. PCz
Profile	General academic
ECTS points	4

TYPE OF TEACHING – NUMBER OF HOURS PER SEMESTER

LECTURE	CLASS	LABORATORY	PROJECT	SEMINAR
15		30	-	-

COURSE AIMS

- Cl. Acquainting with the theoretical basics in the field of automation as well as with issues of design, selection, commissioning and automation systems operation in the field of production engineering.
- C2. Presentation of elementary mathematical models used in automation and control theory.

ENTRY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student is able to explain the essence of basic physical phenomena.
- 2. Student is able to describe electrical and electronic systems as well as explain the rules of their operation.
- 3. Student is able to present the internal and external environment of production companies and describe the cycle of production processes.

LEARNING OUTCOMES

EU1. Student is able to describe phenomena in the field of automation using the Laplace transforms.

- EU2. Student is able to present and describe basic problems in the areas of automation. He is able to adapt their principles and justify the reasons for their adaptation in diversified areas of technical sciences.
- EU3. Student is able to create models of basic automation terms. He can describe them by determining their time and frequency characteristics.
- EU4. Student is able to design and model control systems based on combinational logic circuits.

COURSE CONTENT

Type of teaching – LECTURE	Number of hours
W1. Introduction to the subject. Presentation of basic concepts and terms related to the automation of production processes.	1
W2. Laplace transform. Inverse transform. Properties of Laplace transforms.	1
W3. Determination of Laplace transforms. Tables of Laplace transforms.	1
W4,W5. Transfer function of automation basic terms (proportional term - P, integral term - I, derivative term - D, PI term, PD term, PID term).	2
W6. The response determination of the automation basic terms to the given signals.	1
W7,W8. Block Diagrams and Transfer Functions. Interconnections of systems: (a) series, (b) parallel and (c) feedback connections.	2
W9,W10. Relay control systems.	2
W11,W12. Digital control systems.	2

W13,W14. Programmable Logic Controllers - construction and programming.	2
W15. PLC languages: Ladder Diagram (LD), Instruction List (IL).	1
Type of teaching – LABORATORY	Number of hours
L1. Introductory classes — principles of performing laboratory exercises. Regulations of the laboratory.	2
L2. Testing of oscilloscope and function generator.	2
L3. Modeling of proportional term - time characteristics determination.	2
L4. Modeling of proportional-integral term - time characteristics determination.	2
L5,L6. Determination of frequency characteristics of automation basic terms.	4
L7. Testing of combinational logic circuits.	2
L8,L9. Designing of control logic circuits.	4
L10,L11. Programming of control systems in Ladder Diagram (LD) language.	4
L12-L14. Programming of control systems in Instruction List language.	6
L15. Evaluation of reports.	2

TEACHING TOOLS

- 1. Books and monographs.
- 2. Audiovisual presentation.
- 3. Laboratory devices.

WAYS OF ASSESSMENT (F – FORMATIVE, P – SUMMATIVE)

FI. Laboratory tasks - reports.

STUDENT WORKLOAD

Form of activity		Average number of hours for realization of the activity		
		[h]	ECTS	ECTS
Contact hours with the teacher	Lecture	15	0.6	0.6
Contact hours with the teacher	Laboratory	30	1.2	2.6
Preparation of the laboratory, preparation of reports		35	1.4	2.0
Getting acquainted with the indicated literature		15	0.6	0.6
Consultation		5	0.2	0.2
TOTAL NUMBER OF HOURS / ECTS POINTS FOR		100		1
THE COURSE		100		7

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

Basic resources

- 1. Trevathan V.L. (ed.) Research Triangle Park. NC, USA, International Society of Automation.A Guide to the Automation Body of Knowledge, 2006.
- 2. Frohm J. Levels of Automation in Production Systems. Chalmers University of Technology, 2008.
- 3. Kandray D. Programmable Automation Technologies. Industrial Press, 2010.

Supplementary resources

- 1. Świć A., Lipski J. (eds.) Automation and Control in Industry. Wydaw. Politechniki Lubelskiej, Lublin, 2008.
- 2. Methods and Models in Automation and Robotics: 15th International Conference, 23-26 August 2010, Międzyzdroje, Poland.

TEACHERS (NAME, SURNAME, E-MAIL ADDRESS)

dr hab. inż. Waldemar Jędrzejczyk, prof. PCz, waldemar.jedrzejczyk@wz.pcz.pl

- dr inż. Dariusz Dudek, dariusz.dudek@wz.pcz.pl
- dr inż. Mariusz Pudło, mariusz.pudlo@wz.pcz.pl

dr inż. Adam Sokołowski, adam.sokolowski@wz.pcz.pl

dr inż. Artur Wrzalik, artur.wrzalik@wz.pcz.pl

Learning outcome	Reference of given outcome to outcomes defined for whole program (PRK)	Course aims	Course content	Teaching tools	Ways of assessment
EU1	K_W09, K_U01, K_U02, K_U04, K_U07, K_U10	Cl, C2	W1-W3	1, 2	F1
EU2	K_W09	Cl	W4-W8	1,2	F1
EU3	K_W09, K_U02, K_U07	C1, C2	L1-L6	3	F1
EU4	K_W01, K_W05, K_U08, K_U07, K_K01	C1	W9-W15, L7- L15	1, 2, 3	F1

MATRIX OF LEARNING OUTCOMES REALISATION

FORM OF ASSESSMENT - DETAILS

	grade 2	grade 3	grade 4	grade 5
	Student cannot describe phenomena	Student is able to describe only chosen	Student is able to describe a few	Student is able to describe most
EU1	of automation fields using the Laplace transforms.	phenomena in the field of automation using few Laplace transforms.	phenomena in the field of automation using the Laplace transforms.	phenomena in the field of automation using the Laplace transforms.
EU2	Student cannot present and describe basic problems in the areas of automation. He isn't able to adapt their principles and justify the reasons for their adaptation in diversified areas of technical sciences.	Student is able to present and describe few basic problems in the areas of automation. He isn't able to adapt their principles and justify the reasons for their adaptation in diversified areas of technical sciences.	Student is able to present and describe few basic problems in the areas of automation. He is able to adapt their principles and justify the reasons for their adaptation in few areas of technical sciences.	Student is able to present and describe most of the basic problems in the areas of automation. He is able to adapt their principles and justify the reasons for their adaptation in diversified areas of technical sciences.
EU3	Student cannot create models of basic automation terms. He cannot describe them by determining their time and frequency characteristics.	Student is able to create models of only chosen terms of automation. He can describe them by determining their only time characteristics.	Student is able to create models of the basic terms of automation. He can describe them by determining their time characteristics.	Student is able to create models of the basic terms of automation. He can describe them by determining their time and frequency characteristics.
EU4	Student cannot design and model elementary control systems based on combinational logic circuits.		Student is able to design and model elementary control systems based on combinational logic circuits.	Student is able to design and model advanced control systems based on combinational logic circuits.

ADDITIONAL USEFUL INFORMATION ABOUT THE COURSE

- 1. Information where presentation of classes, instruction, subjects of seminars can be found, etc. presented to students during first classes, if required by the formula classes are sent electronically to the e-mail addresses of individual dean groups.
- 2. Information about the place of classes Information can be found on the website of the Faculty of Management.
- 3. Information about the timing of classes (day of the week / time) Information can be found on the website of the Faculty of Management.
- 4. Information about the consultation (time + place) Information can be found on the website of the Faculty of Management.