COURSE GUIDE

Subject name	Six sigma
Course of study	Quality and Production Management
The form of study	Full-time
Level of qualification	First
Year	IV
Semester	VII
The implementing entity	Department of Production Engineering and Safety
The person responsible for preparing	dr inż. Manuela Ingaldi
Profile	General academic
ECTS points	3

TYPE OF TEACHING – NUMBER OF HOURS PER SEMESTER

LECTURE	CLASS	LABORATORY PROJECT SEMI		SEMINAR		
15		15	-	-		

COURSE AIMS

C1. Understanding Six Sigma methodology used in industry.

C2. Practical application of Six Sigma instruments.

ENTRY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

1. Students knows the basics of quality management and SPC.

- 2. Students uses quality management tools and methods, SPC instruments.
- 3. Students knows the basis of production management.

LEARNING OUTCOMES

EU1. Student knows how to use the Six Sigma method in an enterprise.

- EU2. Student knows the tools and methods used in Six Sigma.
- EU3. Student knows how to perform basic DMAIC project.

EU4. Student has the ability to use literature sources to broaden his knowledge.

COURSE CONTENT

Type of teaching – LECTURE	Number of hours
W1. Idea of Six Sigma concept.	1
W2. Six Sigma tasks. Tools and methods for their implementation.	1
W3. DMAIC project.	3
W4. DMADV project.	2
W5. KANO model.	3
W6. DOE.	2
W7. Implementation of Six Sigma in the enterprise.	2
W8. Effects of organization management according to Six Sigma.	1
Type of teaching – LABORATORY	Number of hours
L1. Introduction to the subject. Overview of requirements and rules of the subject.	1
L2. D- Define. Defining the problem, the purpose of the project. Use of selected tools: CTQ tree, SIPOIC diagram, Kano, design card.	2
L3. M- Measure. Measurement of key parameters of the present process and the collection of relevant data. Calculation of indicators DPU, DPO, DPMO, FTY, RTY, NY, six sigma.	3
L4. A- Analyse. Data analysis to investigate and verify causal relationships. Use of selected tools: Ishikawa diagram, FMEA, graphic techniques, correlation diagram,	3

others.	
L5. I- Improve. Improving or optimizing the current process based on the results of data analysis. Use of selected DOE experiment planning techniques.	3
L6. C-Control. Verifying the quality of the improved process. Use of selected SPC tools.	2
L7. Summarizing test.	1

TEACHING TOOLS

- 1. Audio Visual
- Equipment.
- 2 Blackboard chalk +
 - board.
- 3. Computer (optionally).

WAYS OF ASSESSMENT (F – FORMATIVE, P – SUMMATIVE)

- F1. Student's observation during classes.
- P1. Work in the form of reports on particular tasks (laboratories).

P2. Test.

STUDENT WORKLOAD

Form of activity		Average number of hours for realization of the activity			
		[h]	ECTS	ECTS	
Contact hours with the teacher	Lecture	15	0.6	1.09	
Preparation for test		12	0.48	1.08	
Contact hours with the teacher	Laboratory	15	0.6	1.09	
Preparations of reports on particular tasks (laboratories).		12	0.48	1.08	
Getting acquainted with the indicated literature		13	0.52	0.52	
Consultation		8	0.32	0.32	
TOTAL NUMBER OF HOURS / THE COURSE	ECTS POINTS FOR	75	3	3	

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

Basic resources

- 1. George M.L. Lean Six Sigma: Combining Six Sigma Quality with Lean Speed. New York, McGraw-Hill, 2002.
- 2. Harver G. Lean Six Sigma For Beginners: A Quickstart Beginner's Guide To Lean Six Sigma. CreateSpace Independent Publishing Platform, 2015.
- 3. Agustiady T., Badiru A.B. (eds.) Sustainability Utilizing Lean Six Sigma Techniques. Boca Raton, CRC Press, 2013.

Supplementary resources

- 1. Martin J.W. Lean Six Sigma for Supply Chain Management: the 10-step Solution Process. New York, McGraw-Hill, 2007.
- Borkowski S., Knop K., Mielczarek K. The Use of Six Sigma indicators for Measurement the Process Quality of Products' Conformity Assessment in the Alternative Control. [in:] Borkowski S., Konstanciak M. (eds.) Quality Control as Process Improvement Factor. Oficyna Wydawnicza Stowarzyszenia Menedżerów Jakości i Produkcji, Częstochowa, 2012.
- 3. Ingaldi M. Wprowadzenie do metody Six Sigma. Zeszyty Naukowe Quality. Production. Improvemenent, 2019, 1(10), s. 119-130.

TEACHERS (NAME, SURNAME, E-MAIL ADDRESS)

dr inż. Manuela Ingaldi, manuela.ingaldi@wz.pcz.pl

dr inż. Krzysztof Knop, krzysztof.knop@wz.pcz.pl

dr hab. inż. Robert Ulewicz, Prof. PCz, robert.ulewicz@wz.pcz.pl

dr hab. inż. Dorota Klimecka-Tatar, dorota.klimecka-tatar@wz.pcz.pl

dr inż. Magdalena Mazur, magdalena.mazur@wz.pcz.pl

Learning outcome	Reference of given outcome to outcomes defined for whole program (PRK)	Course aims	Course content	Teaching tools	Ways of assessment
EU1	K_W01, K_W02, K_W07, K_W08, K_U01, K_U02, K_U04, K_U07, K_U08, K_U09, K_U10, K_K01	C1-C2	W1- W8	1,2	F1, P2
EU2	K_W01, K_W02, K_W07, K_W08, K_U01, K_U02, K_U04, K_U07, K_U08, K_U09, K_U10, K_K01	C1-C2	W3- W6, L2-L6	1,2	F1, P2
EU3	K_W01, K_W02, K_W07, K_W08, K_U01, K_U02, K_U04, K_U07, K_U08, K_U09, K_U10, K_K01	C1-C2	L2-L6	1-3	F1, P1
EU4	K_W01, K_W02, K_W07, K_W08, K_U01, K_U02, K_U04, K_U07, K_U08, K_U09, K_U10, K_K01	C1-C2	W1- W8	1,2	F1, P1, P2

MATRIX OF LEARNING OUTCOMES REALISATION

FORM OF ASSESSMENT - DETAILS

	grade 2	grade 3	grade 4	grade 5
EU1	how to use the Six Sigma method in an enterprise.	Student knows only chosen element of how to use the Six Sigma method in an enterprise.	Student knows how to use the Six Sigma method in an enterprise.	Student knows how to use the Six Sigma method in an enterprise and comment it.
EU2	Student does not know the tools and methods used in Six Sigma.	Student knows only chosen tools and methods used in Six Sigma and their elements.	Student knows the tools and methods used in Six Sigma.	Student knows the tools and methods used in Six Sigma and describe their significance for the enterprise.
EU3	Student does not know how to perform basic DMAIC project.	Student knows how to perform only some elements or steps of the basic DMAIC project.	Student knows how to perform basic DMAIC project.	Student knows how to perform basic DMAIC project and comment its results.
EU4	the ability to use	Student has the ability to literature sources use indicated by the	Student alone looks for additional literature sources in order to broaden his knowledge.	Student deepens his knowledge by searching for additional literature sources, is able to compare information contained in them, can draw conclusions from them.

ADDITIONAL USEFUL INFORMATION ABOUT THE COURSE

- 1. Information where presentation of classes, instruction, subjects of seminars can be found, etc. presented to students during first classes, if required by the formula classes are sent electronically to the e-mail addresses of individual dean groups.
- 2. Information about the place of classes Information can be found on the website of the Faculty of Management.
- 3. Information about the timing of classes (day of the week / time) Information can be found on the website of the Faculty of Management.
- Information about the consultation (time + place) Information can be found on the website of the Faculty of Management.