Course title:				
Solids in power and heat engineering				
Materiały sypkie w energetyce				
Field of study:				
Type of study:	The level of education:	Education profile:		
full-time studies	first-cycle studies	general academic		
Type of subject:	Semester:	Course language:		
Wybierz element.	Wybierz element.	English		
Course type:	Number of hours:	ECTS Credit points:		
lecture, tutorial, laboratory	15L, 15T, 15Lab	6		

SYLLABUS

COURSE CONTENT

Form of classes - lectures		
Energy, Heat and Power – needs and common and future production technologies.		
Solid materials and their properties. Types, resources and applications. Particle size distribution of solids.		
Production and preparation of solids materials for agriculture, pharmaceutical industry, food industry, cement industry, and environmental applications. UPS and waste.		
Multiphase flows and fluidization engineering – fundamentals.		
Geldart group of powders. Regimes of fluidization. Gas distributors. BFB. CFB.	1	
Solids crushing, milling and separation. Pellets and briquettes.	1	
Problems of solids material types handling, transportation and storage.	1	
Control and measurement technologies for solids materials.		
Advanced and perspective applications. Nanosolids and dopping.	1	
Form of classes - tutorial	Hours	
Engineering calculations of some chosen gas, liquid and solids properties.	4	
Calculations of some chosen engineering problems associated with thermodynamics and multiphase flows.		
Force balance. Fluidization velocities.		
Cyclone separators – design procedure and calculations		
Test	1	
Form of classes - laboratory		
Organization of laboratory activities – rules and precautions.		
Investigation of solids properties. Size, structure and morphology.		
Determination of particle size distribution of solids.		
Minimum fluidization velocity for various solids types. Terminal velocity.		
Cyclone separators for gas-solids flow. Cyclone separation efficiency.		
Visualization of various gas-solid flow regimes.		

Fluidized bed combustion of solids.	2
Summary discussion	1

COURSE STUDY METHODS

1.	blackboard
	ondondould

2. multimedia presentation

3. laboratory equipment

4. literature resources

METHODS OF ASSESMENT (F - formative; S - summative)

F1 activity during class hours
F2 evaluation of work during laboratory exercises
S1. - evaluation of laboratory reports

STUDENT WORKLOAD

Form of activity	Workload (hours)
Participation in lectures	15 h
Participation in classes	15 h
Laboratory	15 h
Participation in project classes	-
Participation in seminar	-
Preparation course on e-learning	-
Test	1
Entrance test for laboratory classes	-
Project's defence	-
Exam	-
Consultation hours	15 h
DIRECT TEACHING, hours/ ECTS	61 h / 3 ECTS
Preparation for tutorials	30 h
Preparation for laboratories	15 h
Preparation for projects	-
Preparation for seminars	-
Preparation for e-learning classes	-
Participation in e-learning classes	-
Working on project	15
Preparation for tests	30 h
Preparation for exam	-
SELF-STUDY, hours/ ECTS	90 h / 4 ECTS
TOTAL (hours)	Σ 151
TOTAL ECTS	7 ECTS

PRIMARY AND SUPPLEMENTARY TEXTBOOKS

Papers and journals in Digital Libraries, particularly: *Applied Energy, Powder Technology, International Journal of Heat & Mass Transfer, Progress in Energy and Combustion Science, Fuel Processing Technology.* Kunii D., Levenspiel O., *Fluidization Engineering*, London Academic Press, 1991.Yang W. C. (Ed.), *Handbook of Fluidization and Fluid-Particle Systems*, Marcel Dekker, New York, 2003.

Davidson J., Clift R., Harrison D., Fluidization, Academic Press London, 1985.

SUBJECT COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

1. Rafał KOBYŁECKI, rafal.kobylecki@pcz.pl

NAME OF LECTURER (s) (NAME, SURNAME, E-MAIL ADDRESS)

1. Rafał KOBYŁECKI, <u>rafal.kobylecki@pcz.pl</u>