COURSE GUIDE

Subject name	Physics II
Course of study	Quality and Production Management
The form of study	Full-time
Level of qualification	First
Year	Ι
Semester	П
The implementing entity	Department of Physics, Faculty of Production
	Engineering and Materials Technology
The person responsible for preparing	dr inż. Marcin Jarosik
Profile	General academic
ECTS points	3

TYPE OF TEACHNING – NUMBER OF HOURS PER SEMESTER

LACTURE	CLASS	LABORATORY	PROJECT	SEMINAR
15		15		

COURSE AIMS

- C1. Expanding the knowledge and complementing of physics phenomena and the laws governing these phenomena.
- C2. Understanding of the laws of physics in the word of modern technology.
- C3. Mastering and complementing the skills of measuring and analyzing physical phenomena and solving technological problems based on the laws of physics.

ENTRY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of physics laws.
- 2. Knowledge of the mathematics at the level of secondary school.
- 3. Ability to draw up written reports of laboratory experiments.
- 4. Ability to work in a group.

LEARNING OUTCOMES

- EU1. student has knowledge of the achievements and prospects of modern physics in the field of optics, electricity and magnetism.
- EU2. student acquired knowledge of physical phenomena and the laws governing them in the field of optics, electricity and magnetism.
- EU3. student has the ability to collect, analyze and elaborate measurement data.

EU4. student is able to interpret the obtained results and present them in a report.

COURSE CONTENT

Type of teaching – LECTURE	Number of hours
W1. Diffraction and interference.	1
W2. Spectroscopy. Light pipe.	1
W3. Coherence. Generation of coherent light - LASER.	1
W4. Polarization of light. Birefringence.	1
W5. Twisting of the plane of polarization and its analytical relevance.	1
W6. Electrostatics - electric charge, Coulomb's law.	1
W7. The electric field. The electric potential.	1
W8. The electric current.	1
W9. Conductors and insulators.	1
W10. Magnetic forces associated with the current flow.	1
W11. Magnetic Field.	1

W12. Movement of the conductor in a magnetic field.	1	
W13,W14. Magnetic properties of the materials.		
W15. Achievements of Polish physicists in recent years.	1	
Type of teaching – LABORATORY	Number of hours	
L1. Introduction to laboratory classes; choosing of the experiments to carry out by each student; calculation of measuring error.	1	
 L2-L7. Students carry out 6 experiments selected from dozens which are placed in the following laboratories of the Institute of Physics: laboratory of mechanics and heat, laboratory of electricity and magnetism, laboratory of optics. 	12	
L 8 Getting a pass/fail of the laboratory classes; the possibility to make an experiment for student who was absent for justified reasons.	2	

TEACHNING TOOLS

- 1. Lecture with the use of audiovisual media.
- 2. Sets for demonstrations of physics experiments.
- 3. Sets of laboratory experiments which are placed at Institute of Physics.
- 4. Instructions (manuals) for laboratory experiments.

WAYS OF ASSESSMENT (F – FORMATIVE, P – SUMMATIVE)

- F1. Assessment of individual preparation to laboratory classes.
- F1. Assessment of final report of individual laboratory experiments.
- P1. Averaged assessment of preparation for laboratory classes and for the final reports of each experiment carried out.

Form of activity			Average number of hours for realization of the activity		
		[h]	ECTS	ECTS	
Contact hours with the teacher	Lecture	15	0.6	1.0	
Preparing to classes		10	0.4	1.0	
Contact hours with the teacher	Laboratory	15	0.6	1.2	
Preparing to Laboratory		15	0.6	1.2	
Getting acquainted with the indicated literature		15	0.6	0.6	
Consultation		5	0.2	0.2	
TOTAL NUMBER OF HOURS / ECTS CREDITS FOR THE COURSE		75		3	

STUDENT WORKLOAD

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

Basic resources

- 1. Wybourne B. Physics as a Journey. Wydaw. Uniwersytetu Mikołaja Kopernika, Toruń, 1998.
- 2. Serway R.A., Jewett J.W.Jr. Physics: For Scientists and Engineers. 6th edition. Brooks/Cole Publishing Co.,2004.
- 3. Ling S.J., Sanny J., Moebs W. University Physics Vol.1-2. OpenStax, Rice University 2016. http://cnx.org/content/col12031/1.10
- 4. Lech J. Opracowanie wyników pomiarów w pierwszej pracowni fizycznej. Wyd. Polit. Częstochow., 1997.

Supplementary resources

1. Jarosik M., Szczęśniak R., Durajski A., Kalaga J., Leoński W. Influence of External Extrusion on Stability of Hydrogen Molecule and its Chaotic Behavior. Chaos 28, 013126 (2018), https://doi.org/10.1063/1.5008986.

- Wrona I.A., Jarosik M.W., Szczęśniak R., Szewczyk K.A., Stala M.K., Leoński W. Interaction of the hydrogen molecule with the environment: stability of the system. arXiv:1902.10520 2019, https://arxiv.org/pdf/1902.10520.
- 3. Sodolski H. Selected Problems in Physics. Wydaw. Politechniki Gdańskiej, Gdańsk, 1996.
- 4. Zubek M. Experiments in Physics: First Laboratory for Students. Wydaw. Politechniki Gdańskiej, 1996.
- Dziliński K., Wysłocki J. Solid State Physics in Modern Materials Research: PHYSICS 2010. Wydaw. Wydz. Inżynierii Procesowej, Materiałowej i Fizyki Stosowanej PCz, 2010.

TEACHERS (NAME, SURNAME, E-MAIL, ADDRESS)

prof. dr hab. inż. Jerzy Wysłocki, jerzy.wyslocki@pcz.pl

dr inż. Marcin Jarosik, marcin.jarosik@pcz.pl

dr Anna Przybył, anna.przybyl@pcz.pl

dr Katarzyna Pawlik, katarzyna.pawlik@pcz.pl

dr Marcin Nabiałek, marcin.nabialek@pcz.pl

dr Tomasz Kaczmarzyk, tomasz.kaczmarzyk@pcz.pl

Learning outcome	Reference of given outcome to outcomes defined for whole	Course aims	Course content	Teachning tools	Ways of assessment
	program (PRK)				
	K W01	C1	W1, W6-	1, 2	F1, P1
EU1	_		W8, W10-		
			W12		
	K_W01	C2	W2-W5,	1, 2	F1, P1
EU2			W9, W13-		
			W15		
	K_U01, K_U02, K_U04,	C3	L1-L8	3, 4	F1, P1
EU3	K U07, K U08, K U09,				
	K_U10				
EU4	K_U04, K_U05, K_U09	C3	L1-L8	3, 4	F2, P1

MATRIX OF LEARNING OUTCOMES REALISATION

FORM OF ASSESSMENT - DETAILS

	grade 2	grade 3	grade 4	grade 5
	Student does not	Student possesses	Student possesses	student possesses
	possess knowledge	poor knowledge of	systematic	systematic and wide
	of the achievements	the achievements	knowledge of the	knowledge of the
EU1	and prospects of	and prospects of	achievements and	achievements and
LUI	modern physics in	modern physics in	prospects of modern	prospects of modern
	the field of optics,	the field of optics,	physics in the field	physics in the field of
	electricity and	electricity and	of optics, electricity	optics, electricity and
	magnetism.	magnetism.	and magnetism.	magnetism.
	Student did not	Student acquired	Student acquired	Student acquired
	acquire knowledge	partial knowledge	knowledge of	advanced knowledge of
	of physical	of physical	physical phenomena	physical phenomena and
EU2	phenomena and the	phenomena and the	and the laws	the laws governing them
EU2	laws governing them	laws governing	governing them in	in the field of optics,
	in the field of optics,	them in the field of	the field of optics,	electricity and
	electricity and	optics, electricity	electricity and	magnetism.
	magnetism.	and magnetism.	magnetism.	
	Student has not the	Student has the	Student has the fair	Student has the advanced
EU3	ability to collect,	limited ability to	ability to collect,	ability to collect, analyze
EUS	analyze and	collect, analyze and	analyze and	and elaborate
	elaborate	elaborate	elaborate	measurement data.

	measurement dat.a	measurement data.	measurement data.	
	Student is unable to	Student in some	Student in most	Student in all cases is
	interpret the	cases is able to	cases is able to	able to interpret the
EU4	obtained results and	solve interpret the	interpret the	obtained results and
LU4	present them in a	obtained results and	obtained results and	present them in a report.
	report.	present them in a	present them in a	
		report.	report.	

ADDITIONAL USEFUL INFORMATION ABOUT THE COURSE

- 1. Information where presentation of classes, instruction, subjects of seminars can be found, etc. presented to students during first classes, if required by the formula classes are sent electronically to the e-mail addresses of individual dean groups.
- 2. Information about the place of classes Information can be found on the website of the Faculty of Management.
- 3. Information about the timing of classes (day of the week / time) Information can be found on the website of the Faculty of Management.
- 4. Information about the consultation (time + place) Information can be found on the website of the Faculty of Production Engineering and Materials Technology