SYLLABUS OF A MODULE

Polish name of a module	Inteligentne systemy przetwarzania
	sygnałów
English name of a module	Inteligent systems of signal processing
ISCED classification - Code	0619
ISCED classification - Field of	Information and Communication
study	Technologies (ICTs), not elsewhere
	classified
Languages of instruction	English
Level of qualification:	2
Number of ECTS credit points	5
Examination:	EW
Available in semester:	А

Number of hours per semester:

Lecture	Tutorial	Laboratory	Seminar	Project	Others
30 E	0	30	0	0	0

MODULE DESCRIPTION

Module objectives

- O1. Acquainting the student with selected methods of intelligent data processing, especially artificial neural networks.
- O2. Obtaining by the students the skills in practical application of presented methods.
- O3. Obtaining by the students the practical skills in developing solutions to intelligent data processing.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. The basic knowledge in the field of the arithmetic.
- 2. The basic knowledge in the field of programming.

- 3. The skills of working alone and in the group.
- 4. The skills of correct interpretation and presentation of own activity.

LEARNING OUTCOMES

- LO 1 Students will possess a depth theoretical knowledge in the field of the feed forward neural networks and their learning
- LO 2 Students will possess a basic knowledge in the field of the recurrent neural networks, especially Hopfield's like networks.
- LO 3 Students will possess a basic knowledge in the field of the optimization process with using of Hopfield networks.
- LO 4 Students will possess a basic knowledge in the field of the construction of autoassociative memories with using of discrete Hopfield networks.
- LO 5 Students will possess a basic knowledge in the field of the optimization process with using of evolutionary algorithms.
- LO 6 Students will possess practical skills in developing neural networks and evolutionary programming to processing a data.

MODULE CONTENT

	Number
Type of classes – lecture	of
	hours
Lec 1 - Introduction to intelligent computational system	2
Lec 2-3 - Dimensionality reduction methods	4
Lec 4 - Basics of neural networks	2
Lec 5 - Autoencoders	2
Lec 6 - Restricted Boltzmann Machines	2
Lec 7 - Cryptography using artificial intelligence	2
Lec 8 - Continuous Hopfield Neural Networks	2
Lec 9 - Discrete Hopfield Neural networks	2
Lec 10 - Hamming neural networks	2
Lec 11-12 - Natural Language Processing	4
Lec 13 – Various application of signal processing	2

Lec 14 - Data Stream mining	2
Lec 15 - Drift detectors	2
Sum	30
	Number
Type of classes– laboratory.	of
	hours
Lab 1 – 2 - Introduction to python	4
Lab 3 - Introduction to tensorflow	2
Lab 4 - Dimensionality reduction methods	2
Lab 5 – 6 – Autoencoders	4
Lab 7 – 8 - Restricted Boltzmann Machines	4
Lab 9 – Hopfield and Hamming Neural Networks	2
Lab 10 – 11 - Natural Language Processing	4
Lab 12 – 13 - Image and Video processing	4
Lab 14 - Speech processing	2
Lab 15 - Summary and final assessment	2
Sum	30

TEACHING TOOLS

4 1 1	•	14.	1 11
7 IOOTIIROO	110100	militimadia	presentations
	1151111	111111111111111111111111111111111111111	DIECELIATIONS

- 2. blackboard and chalk or whiteboards and pens
- 3. laboratory guides
- 4. reports from laboratory activities
- 5. computer stations with software

WAYS OF ASSESSMENT (F-FORMATIVE, S-SUMMATIVE

- F1. assessment of preparation for laboratory exercises
- **F2.** assessment of the ability to apply the acquired knowledge while doing the exercises
- **F3.** evaluation of reports on the implementation of exercises covered by the curriculum
- F4. assessment of activity during classes

S1. - assessment of the ability to solve the problems posed and the manner of presentation obtained results - pass mark *

S2. - assessment of mastery of the teaching material being the subject of the lecture - exam

STUDENT'S WORKLOAD

		Average number of	
L.p.	Forms of activity	hours required for	
		realization of activity	
1.	Contact hours with teacher		
1.1	Lectures	30	
1.2	Tutorials	0	
1.3	Laboratory	30	
1.4	Seminar	0	
1.5	Project	0	
	Total number of contact hours with teacher:	60	
2.	Student's individual work		
2.1	Preparation for tutorials and tests	0	
2.2	Prreparation for laboratory exercises, writing	25	
2.2	reports on laboratories	20	
2.3	Preparation of project	0	
2.4	Preparation for final lecture assessment	0	
2.5	Preparation for examination	20	
2.6	Individual study of literature	20	
	Total numer of hours of student's individual work:	65	
	Overall student's workload:	125	
Overall number of ECTS credits for the module		5	
Number of ECTS points that student receives in classes		2,4	
requiring teacher's supervision:			

^{*)} in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

Number of ECTS credits acquired during practical classes	1.2
including laboratory exercises and projects :	1,2

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, http://www.deeplearningbook.org, 2016
- 2. Charu C. Aggarwal, Neural Networks and Deep Learning. A Textbook, Springer, 2018
- 3. James P. Coughlih, Robert H. Baran: Neural Computation in Hopfield Networks and Boltzmann Machines, Univ of Delaware Pr 1995

MODULE COORDINATOR (NAME, SURNAME, INSTITUTE, E-MAIL ADDRESS)

1. dr hab. Piotr Duda, prof. PCz., piotr.duda@pcz.pl