SYLLABUS OF A MODULE

Polish name of a module	Sztuczna inteligencja w zastosowaniach kontrolnych
English name of a module	Artificial intelligence in control applications
ISCED classification - Code	0619
ISCED classification - Field of	Information and Communication
study	Technologies (ICTs), not elsewhere
	classified
Languages of instruction	English
Level of qualification:	2
Number of ECTS credit points	4
Examination:	A
Available in semester:	A

Number of hours per semester:

Lecture	Tutorial	Laboratory	Seminar	Project	Others
15	0	45	0	0	0

MODULE DESCRIPTION

Module objectives

- O1. To introduce students into implementation of artificial intelligence tools in control application issues. To do this some overview of selected components of artificial intelligence will be presented in terms of their usefulness in typical applications in control systems.
- O2. To obtain knowledge and practical skills in designing, running and testing examples of control systems using components of artificial intelligence.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knowledge of mathematics, artificial intelligence
- 2. Basic knowledge and skills in computer programming.

LEARNING OUTCOMES

- LO 1 Students have basic knowledge how to use artificial intelligence components in control systems.
- LO 2 Students are able to use suitable artificial intelligence components to implement in selected control system applications
- LO 3 Students are able to prepare report describing implemented application.

MODULE CONTENT

Type of classes - Lectures		Number of
i ype oi	hours	
Lect. 1	General aspects of using artificial intelligence methods	1
	in control systems	•
Lect. 2	Feedback control systems	1
Lect. 3	Using transfer functions	1
Lect.	Designing control systems	1
4		•
Lect. 5	State space-models and controlability	1
Lect. 6	Nonlinear control	1
Lect. 7	Conventional MLP function approximators	1
Lect. 8	Artificial Neural Networks in Control	1
Lect. 9	Neurocontrollers	1
Lect.	Recurrent Neural Networks	1
10		•
Lect.	Fuzzy systems in Control	1
11		·

Lect.	RBF and ANFIS	1
12		I
Lect.	Fuzzy controlers	1
13		•
Lect.	Fuzzy PID controllers	1
14		•
Lect.	Genetic algorithms and new trends in intelligent control	1
15		•
Type of	classes– Laboratory	Number of
. , , , , , , , , , , , , , , , , , , ,		hours
Lab. 1	Introduction to the Matlab-Simulink environment	3
Lab. 2	Feedback control systems	3
Lab. 3	Using transfer functions	3
Lab. 4	Designing control systems	3
Lab. 5	Using the Model Reference Controller Block	3
Lab. 6	Using the Model Reference Controller Block cont.	3
Lab. 7	Using the NARMA-L2 Controller Block	3
Lab. 8	Using the NARMA-L2 Controller Block cont.	3
Lab. 9	Using the NN Predictive Controller Block	3
Lab.	Using the NN Predictive Controller Block cont.	3
10		
Lab.	Fuzzy Logic Controller	3
11		
Lab.	Fuzzy Logic Controller cont.	3
12		
Lab.	Fuzzy Logic Controller with Ruleviewer	3
13		
Lab.	Fuzzy Logic Controller with Ruleviewer cont.	3
14		
Lab.	Examples of control	3
15		

TEACHING TOOLS

- 1. lectures using multimedia presentations
- 2. reports from laboratory activities
- **3.** computer stations with software

WAYS OF ASSESSMENT (F – FORMATIVE, S – SUMMATIVE)

- **F1. –** assessment of reports
- F2. assessment of activity and control tests (optional)

S1. – assessment of the project (optional)

S2. – assessment of knowledge - passing the lecture

*) warunkiem uzyskania zaliczenia jest otrzymanie pozytywnych ocen ze wszystkich ćwiczeń laboratoryjnych oraz realizacji zadania sprawdzającego

STUDENT'S WORKLOAD

L.p.	Forms of activity	Average number of hours required for realization of activity
1.	Contact hours with teacher	
1.1	Lectures	15
1.2	Tutorials	0
1.3	Laboratory	45
1.4	Seminar	0
1.5	Project	0
	Total number of contact hours with teacher:	60
2.	Student's individual work	
2.1	Preparation for tutorials and tests	10
2.2	Prreparation for laboratory exercises, writing	10
	reports on laboratories	
2.3	Preparation of project	0

2.4	Preparation for final lecture assessment	10
2.5	Preparation for examination	0
2.6	Individual study of literature	10
	Total numer of hours of student's individual work:	40
	Overall student's workload:	100
Over	all number of ECTS credits for the module	4
Over Num requi	rall number of ECTS credits for the module ber of ECTS points that student receives in classes iring teacher's supervision:	4 2,4

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

1.	Leszek Rutkowski.	Computational	Intelligence.	Springer-Verlag 20	10
	,	•••••••••••••••••••••••••••••••••••••••			•••

2. Vas P.: Artificial-Intelligence-Based Electrical Machines and Drives, Oxford University Press, 1999

MODULE COORDINATOR (NAME, SURNAME, INSTITUTE, E-MAIL ADDRESS)

Dr. hab. inż. Janusz Starczewski, prof. PCz., janusz.starczewski@pcz.pl