COURSE GUIDE

Subject name	Energy efficiency management
Course of study	Quality and Production Management
The form of study	Full-time
Level of qualification	First
Year	III
Semester	VI
The implementing entity	Department of Information Management Systems
The person responsible for preparing	dr hab. inż. Robert Kucęba, prof. PCz
	dr inż. Mariusz Pudło
Profile	General academic
ECTS points	2

TYPE OF TEACHING – NUMBER OF HOURS PER SEMESTER

LECTURE	CLASS	LABORATORY	PROJECT	SEMINAR
15	15	-	-	-

COURSE AIMS

- C1. Presenting and discussing widely understood aspects concerning the methods of energy efficiency management such as, inter alia: sustainable development, innovative technologies of energy production and utilization, minimizing the cost of energy production.
- C2. Discussing and characterizing technological actions concerning energy efficiency including: thermal upgrading of buildings, eliminating the losses of energy transmission, possibilities of changing energy providers, reorganization of production processes, use of renewable energy in individual households and enterprises.

ENTRY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Student can explain the principles of ecological and rational energy use.
- 2. Student can present economic principles of energy use reduction.
- 3. Student presents selected technological actions that influence energy use reduction.

LEARNING OUTCOMES

- EU1. Student knows basic issues connected with energy security and energy efficiency with reference to sustainable development. Student can make use of them in the process of energy use optimization.
- EU2. Student knows the principles of energy audit construction and with the use of proper computer packages can prepare a building auditing aimed at optimizing the use of energy.
- EU3. Student knows methods of technological actions implementation concerning energy efficiency, in this, thermal upgrading of buildings, eliminating the losses of energy use transmission, possibilities of changing the energy provider.
- EU4. Student can estimate the costs incurred to improve energy efficiency and estimate the energy profit in cash equivalent.

COURSE CONTENT

Type of teaching – LECTURE	Number of hours
W1. Introduction to the subject. Presenting basic issues and terms connected with methods of energy efficiency management.	1
 W2. Aspect of sustainable development with reference to energy efficiency improvement: analysis of ecological methods of implementing ventures that rationalise energy consumption, analysis of technical and economic actions that rationalise energy consumption. 	2

W3. Optimizing energy consumption through introduction of innovative technologies of their use.	1	
W4. Cost reduction of energy acquisition with reference to various production sources.	1	
	1	
W5. Influence of energy management with reference to individual households and enterprises.	1	
	1	
W6.Presentinglegalaspects concerning energy efficiency.	1	
W7. Methods of conducting audits concerning electricity use among individual recipients	2	
and enterprises.		
W8. Presenting technological actions concerning energy efficiency through:		
- thermal upgrading of buildings,		
- change of used energy sources and/or carriers with reference to various economic		
entities,		
- eliminating the losses of transmission and use of heat and electricity,		
- waste energy use,	3	
- possibility of selling the surpluses of produced energy,		
- monitoring the energy consumption,		
- possibility of changing the energy provider and making use of special tariffs,		
- reorganizing the production process,		
- using energy from renewable energy sources.		
W9. Decision support in energy efficiency management.	1	
W10. Procedures of acquiring resources from the pro-environmental actions funds.	1	
W11. Methods of assessing the potential of local renewable energy sources.	1	
W12. Managing energy efficiency in public utilities.	1	
Type of teaching - CLASS	Number	
	of hours	
C1. Energy resources distribution in the world.	2	
C2. Energy security - import and export structure.		
C3. Energy efficiency of buildings, transport and enterprises.	2	
C4. Economic market models - WILMAR, EPC-MACRO, COMPETES, EMELIE, SFE,	2	
AURORAxmp, EMCAS, PLEXOS, GTMax, UPLAN, WASP.	2	
C5 Projecting energy consumption.	2	
C6. Energy audit of a household.	2	
C7. Energy audit in public utilities.	2	
C8. Test.	1	

TEACHING TOOLS

- 1. Books, press articles, multimedia presentations, Internet, valid law regulations, energy audits, economic maps, computer packages GRETL, Statistica.
- 2. Computers and multimedia projector.

WAYS OF ASSESSMENT (F - FORMATIVE, P - SUMMATIVE)

F1. Current assessment of Student's activeness.

- F2. Assessment of creativity in group works, formulating new solutions.
- P1. Control tests checking the teaching outcomes at particular stages of education.

STUDENT WORKLOAD

Form of activity		0	Average number of hours for performing an activity		
		[h]	ECTS	ECTS	
Contact hours with the teacher	Lecture	15	0.6	0.68	
Preparation to the test		2	0.08	0.08	
Contact hours with the teacher	Laboratory	15	0.6	0.72	
Preparation to the exercises		3	0.12	0.72	

Getting acquainted with the indicated literature	5	0.2	0.2
Consultation	10	0.4	0.4
TOTAL NUMBER OF HOURS / ECTS POINTS FOR THE COURSE	50	2	2

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

Basic resources

- 1. Kucęba R., Zawada M., Szajt M., Kowalik J. Prosumer Energy as a Stimulator of Micro-Smart Grids Development - on the Consumer Side. 2nd International Conference on Energy and Environmental Science (ICEES 2018), Kuala Lumpur, Malezja, 2018.
- 2. Kucęba R. Virtual power plant. Chosen aspects of organizing and managing dispersed generation subjects. Toruń: TNOiK "Dom Organizatora" 2011. 278 p. ISBN 978- 83-7285-600-5.
- 3. Niedziółka D. Green Energy in Poland. CeDeWu.pl, Warszawa 2012.
- 4. Popczyk J. Distributed Energy. PKEOM, Warszawa 2011.

Supplementary resources

- 1. Malko J. Wybrane zagadnienia prognozowania w elektroenergetyce. Politechnika Wrocławska, Wrocław 1995.
- 2. Polityka energetyczna Polski do 2030 roku Dokument przyjęty przez Radę Ministrów w dniu 10 listopada 2009 roku, Ministerstwo Gospodarki, Warszawa, 10 listopada 2009.
- 3. Rynek Energii, czasopismo, Wydawnictw Kaprint, Lublin.
- 4. Legal acts directives, resolutions and laws.

TEACHERS (NAME, SURNAME, E-MAIL ADDRESS)

dr hab. inż. Robert Kucęba, prof. PCz, robert.kuceba@wz.pcz.pl dr inż. Mariusz Pudło; mariusz.pudlo@wz.pcz.pl

Learning outcome	Reference of given outcome to outcomes defined for whole program (PRK)	Course aims	Course content	Teaching tools	Ways of assessment
EU1	K_W01, K_W02, K_W07, K_W09, K_W10, K_U01, K_U02, K_U03, K_K02, K_K04,	C1, C2	W1-W4, W10 C1, C2,	1, 2	F1, F2, P1
EU2	K_W02, K_U01, K_U02, K_U04, K_U07, K_U08, K_U09, K_U10, K_K02	C2	W5-W7, W9, W11, C4, C6, C7	1,2	F1, F2, P1
EU3	K_W01, K_W02, K_W03, K_U09	C1,C2	W8, W12 C3, C5	1, 2	F1, F2, P1
EU4	K_W02, K_U01, K_U02, K_U04, K_U07, K_U08, K_U09, K_U10, K_K02	C1,C2	W7, W9, W11 C4, C6, C7	1, 2	F1, F2, P1

MATRIX OF LEARNING OUTCOMES REALISATION

FORM OF ASSESSMENT - DETAILS

	grade 2	grade 3	grade 4	grade 5
	Student does not	Student knows basic	Student knows basic	Student knows basic
	know basic issues	issues connected with	issues connected with	issues connected with
	connected with	energy security and	energy security and	energy security and
	energy security and		energy efficiency with	
EU1	energy efficiency	with reference to	reference to sustainable	reference to sustainable
EUI	with reference to	sustainable	development. Student	development. Student
		A		can make use of them in
	-			the process of energy use
	cannot make use of	in the process of	A	optimization. Student
	them in the process of		Student can indicate	can indicate basic

	energy use	energy use	basic directions of	directions of export and
	optimization.	optimization.	export and import of	import of energy
	optimization.	optimization.	energy resources.	resources. Student knows
			Student knows their	their world distribution.
			world distribution.	Student can determine
			world distribution.	
				energy efficiency of
				buildings and selected
				means of transport.
	Student does not	Student knows the	Student knows the	Student knows the
	know the principles	principles of energy	principles of energy	principles of energy
	of energy audit	audit construction	audit construction and	audit construction and
	construction and with	and with the use of	with the use of proper	with the use of proper
	the use of proper	proper computer	computer packages can	computer packages can
	computer packages	packages can prepare	prepare a building	prepare a building
	can prepare a building	a building auditing	auditing aimed at	auditing aimed at
ELIA	auditing aimed at	aimed at optimizing	optimizing the use of	optimizing the use of
EU2	optimizing the use of	the use of energy.	energy Student can	energy Student can
	energy.		prepare information	prepare information
			indispensable for its	indispensable for its
			construction.	construction. Student
				can prepare audit of the
				building with the use of
				proper computer
				packages.
	Student does not	Student knows	Student knows methods	Student knows methods
	know methods of	methods of		of technological actions
	technological actions	technological actions	implementation	implementation
	implementation	implementation	concerning energy	concerning energy
	concerning energy	concerning energy	efficiency, in this,	efficiency, in this,
	efficiency, in this,	efficiency, in this,	thermal upgrading of	thermal upgrading of
	thermal upgrading of	thermal upgrading of	buildings, eliminating	buildings, eliminating
		buildings, eliminating		
	buildings, eliminating		e:	61
EU3	the losses of energy	the losses of energy	transmission,	transmission,
	use transmission,	use transmission,	possibilities of	possibilities of changing
	possibilities of	possibilities of	changing the energy	the energy provider.
	changing the energy	changing the energy	provider. Student can	Student can calculate
	provider.	provider.	calculate losses	losses resulting from
			resulting from	resources applied in
			resources applied in	construction. Student can
			construction.	conduct actions
				connected with changing
	~	~ .	~	the provider.
	Student cannot	Student can estimate	Student can estimate	Student can estimate the
	estimate the costs	the costs incurred to	the costs incurred to	costs incurred to improve
	incurred to improve	improve energy	improve energy	energy efficiency and
EU4	energy efficiency and	efficiency and cannot	efficiency and estimate	estimate the energy
	cannot estimate the	estimate the energy	the energy profit in	profit in cash equivalent.
	energy profit in cash	profit in cash	cash equivalent.	Student know good
	equivalent.	equivalent.		practice.
1	equivalent.	equivalent.		practice.

ADDITIONAL USEFUL INFORMATION ABOUT THE COURSE

1. Information where presentation of classes, instruction, subjects of seminars can be found, etc. - presented to students during first classes, if required by the formula classes are sent electronically to the e-mail addresses of individual dean groups.

- 2. Information about the place of classes Information can be found on the website of the Faculty of Management.
- 3. Information about the timing of classes (day of the week / time) Information can be found on the website of the Faculty of Management.
- 4. Information about the consultation (time + place) Information can be found on the website of the Faculty of Management.