Subject (course) name: Computer Architecture			
Programme: Computer Science Specialty:		Subject code: 15	
		Title graduate: Engineer	
Type of course: obligatory	Course level: First-cycle studies	Year: II Semester: III Semester: spring	
Form of classes: Lectures, Classes, Labs, Seminar, Project	Number of hours per week: 2L, 0, 1Lab, 0, 0	Credit points: 4 ECTS	

GUIDE TO SUBJECT

SUBJECT OBJECTIVES

- C1. General knowledge in number representation, format conversion, computer arithmetic.
- C2. Particular knowledge in computer architecture and organization.
- C3. General ability to classify, compare and characterize the primary features of real computers.
- C4. General programming skills in low-level language.

SUBJECT REQUIREMENTS

- 1. General knowledge in math and logical devices.
- 2. General ability to programming.
- 3. General ability to independently search in literature and online resources.

LERNING OUTCOMES

- EK 1 Student will be able to represent numbers in various formats, convert them and will collect knowledge in computer arithmetic operation.
- EK 2 Student will be able to characterize a computer and its elements.
- EK 3 Student will be able to classify the real computers on the basis of its parameters and documentation.
- EK 4 Student will be able to design a simple software in low level programming and report it.

SUBJECT CONTENT

Form of classes - lectures

Торіс	Hours
W1 – Introduction – history of computers	1
W2 – Basic computer ideas: von Neumann and Harvard architectures	2
W3 – CPU: elements, instruction cycle, instruction set	2
W4 – Floating point representation, IEEE-P754 standard, FPU	2
W5 – Pipeline computing	2
W6 – Superscalar	2
W7 – Parallel processing, supercomputers, vector computing, multicore processors	2
W8 – Memory: hierarchy, association, virtual memory, cache coherency	2
W9 – Input-output circuits, interrupts and exceptions	2
W10 – Overview of modern computers and alternative architectures	2
W11 – Number representation, format conversion	2
W12 – Arithmetic operations in a fixed- and floating point formats	7

Final test	2
Total	30

Form of classes – laboratory

Торіс	Hours
L1 – Driving microcontroller's port lines	2
L2 – Program and data memories, addressing modes	2
L3 – Arithmetic operations, stack, subroutines	2
L4 – Driving the 7-segment LED display	2
L5 – Reading the sequential keyboard	2
L6 – Reading the matrix keyboard	2
L7 – Driving the alphanumerical LCD display	2
Examination of programming tasks	1
Total	15

STUDY METHODS

- 1. Lectures using multimedia presentations and computer arithmetic tasks
- 2. Discussion during the course and in addition during individual consultations
- 3. Laboratory analysis of the operation and development of software teamwork

EDUCATIONAL TOOLS

- 1. Audiovisual equipment, black(white)board, lectures in electronic version
- 2. Textbook with exercises of computer arithmetic
- 3. Dedicated software for presentation of chosen aspects discussed during lectures
- 4. Microprocessor based development systems labs

METHODS OF ASSESMENT (F – Forming, P – Summary)

F1. assessment of self preparation for laboratory classes – oral answer

- F2. assessment of the correctness and timeliness of presentation software created
- **P1.** lecture written test of the theory and completion of tasks in computer arithmetic
- P2. laboratory assessment of ability to software analysis and software development

STUDENT WORKLOAD

Form of activity		Averaged workload (hours)		
		[h]	Σ [h]	ECTS
Participation in class activities	lecture	30		
	laboratory	15	48	3
	consultation	3		
Preparation for tutorials (reading literature)		10		
Preparation for test		15		
Preparation for computer arithmetic tas	ks	15	42	1
Familiarizing yourself with the education	nal software	2		
Total			90	4

A. BASIC READING

- **1.** Patterson D., Hennessy J.: Computer Organisation and Design: The Hardware/Software Interface, Morgan Kaufmann, 2009.
- 2. Parhami B.: Computer Arithmetic: Algorithms and Hardware Designs, 2nd edition, Oxford University Press, New York, 2010.

3. Mano M.: Computer System Architecture, Pearson Education, 2008.

4. Stallings W.: Computer Organization and Architecture, Designing for performance, 8th edition, Pearson Education, 2008.

B. FURTHER READING

- Baer J.L.: Microprocessor Architecture. From Simple pipelines to Chip Multiprocessors. Cambridge University Press, New York 2010.
- **2.** Grys S.: Arytmetyka komputerów w praktyce (en. Computer Arithmetic in Practice). Wyd. Naukowe PWN, Warsaw 2007 (reprint 2013) in Polish.
- 3. Journals, e.g..: IEEE Transactions on Computers, IEEE Computer, IEEE Parallel and Distributed

Technology, Computers & Electrical Engineering.

Learning objectives	In relation to the learning outcomes specified for the field of study	Subject objectives	Study methods	Methods of assessment
EK1	K_W07 K_U13	C1	lectures, discussion	P1
EK2	K_W07	C2	lectures, discussion	P1
EK3	K_W07	C3	lectures, discussion	P1
EK4	K_W05 K_U02 K_U13	C4	discussion, laboratory	F1,F2,P2

II. EVALUATION

Grade	Outcome
EK1	Student is able to represent numbers in various formats, convert them and will collect
	knowledge in computer arithmetic operation
2 (F)	Student is not able to represent numbers in various formats, convert them and did not collect
	knowledge in computer arithmetic operation
3 (E)	Student is able to represent numbers in various formats
4 (C)	Student is able to represent numbers in various formats and convert them
5 (A)	Student is able to represent numbers in various formats, convert them and will collect knowledge in
	computer arithmetic operation
EK2	Student is able to characterize a computer and its elements
2 (F)	Student is not able to characterize a computer and its elements
3 (E)	Student is able to characterize a computer
4 (C)	Student is able to characterize a computer and its some elements
5 (A)	Student is able to characterize a computer and its elements
EK3	Student is able to classify the real computers on the basis of its parameters and
	documentation
2 (F)	Student is not able to classify the real computers on the basis of its parameters and documentation
3 (E)	Student is able to classify the real computers on the basis of its primary parameters
4 (C)	Student is able to classify the real computers on the basis of its primary parameters
5 (A)	Student is able to classify the real computers on the basis of its parameters and documentation
EK4	Student is able to design a simple software in low level programming and report it
2 (F)	Student is not able to design a simple software in low level programming
3 (E)	Student is able to design a simple software in low level programming on the basis of demo software
4 (C)	Student is able to design a simple software in low level programming but has limited ability to report it
5 (A)	Student is able to design a simple software in low level programming and report it

III. OTHER USEFUL INFORMATION

- 1. All information for students on the schedule are available on the notice board and on the website: <u>https://we.pcz.pl/</u>
- 2. Information on the consultation shall be provided to students during the first lecture and will be placed on the website https://we.pcz.pl/
- 3. Terms and conditions of credit courses will be provided to students during the first lecture