Course title:				
Environmental Chemistry Chemia środowiska				
Field of study:				
Type of study:	The level of education:	Education profile:		
full-time studies	first-cycle studies	general academic		
Type of subject:	Semester:	Course language:		
Wybierz element.	Wybierz element.	English		
Course type:	Number of hours:	ECTS Credit points:		
lecture, tutorials	15L, 15T	5		

SYLLABUS

Form of classes - lectures		
Course organization, assignment rules		
Geoecosystems characterization		
Chemical reactions in the atmosphere: formation and decomposition of		
stratospheric ozone	1	
Chemical reactions in the atmosphere: formation of smog		
Chemical reactions in the atmosphere: acid rains		
Earth energy balance: greenhouse effect		
Water in environment		
Basic parameters of natural water		
Nutrient elements in natural waters – eutrophication		
Structure, characteristics and role of soil		
Geochemical cycles of selected chemical elements		
Inorganic and organic pollutants in environment		
Chemical pollution in environment – self-treatment processes and chemical	1	
treatment methods		
Assignment		
Form of classes - tutorials		
Introduction to the course, workplan presentation, rules of assignment		
Gaseous statement, ideal gas law		
Mixtures of gases, Dalton law of partial pressures		
Atmospheric chemistry – atmospheric ozone		
Atmospheric chemistry – principal and trace elements in the atmosphere		
Solubility of simple gases in water, Henry's law		
Gases reacting with water		
Water chemistry: hardness, alkalinity, pH of water		
Hydrosphere chemistry: carbonate equilibria		
Dissolved oxygen in water		
Chemistry of soil, components of soil		
Nutrient substances in soil		
Assignment		

COURSE STUDY METHODS

- 1. blackboard, interactive whiteboard, e-learning platform
- 2. multimedia presentation
- **3.** sets of problems for solving during classes and for individual solution
- 4. physico chemical tables, periodic table of elements

METHODS OF ASSESMENT (F - formative; S - summative)

- F1. activity in classes
- S1. test on lectures
- **S2.** tasks during tutorials

STUDENT WORKLOAD

Form of activity	Workload (hours)
Participation in lectures	15 h
Participation in classes	15 h
Laboratory	- h
Participation in project classes	- h
Participation in seminar	- h
Preparation course on e-learning	- h
Test	- h
Entrance test for laboratory classes	- h
Project's defence	- h
Exam	- h
Consultation hours	40 h
DIRECT TEACHING, hours/ ECTS	70 h / 2,8 ECTS
Preparation for tutorials	45 h
Preparation for laboratories	- h
Preparation for projects	- h
Preparation for seminars	- h
Preparation for e-learning classes	- h
Participation in e-learning classes	- h
Working on project	- h
Preparation for tests	10 h
Preparation for exam	- h
SELF-STUDY, hours/ ECTS	55 h / 2.2 ECTS
TOTAL (hours)	Σ 125
TOTAL ECTS	5 ECTS

PRIMARY AND SUPPLEMENTARY TEXTBOOKS

vanLoon G.W., Duffy S.J., Environmental Chemistry. Global perspective, Oxford University Press, Oxford, UK, 2010

O'Neil P., Environmental Chemistry, CRC Press, UK, 1998

Manahan S.E., Environmental Chemistry, CRC Press, UK, 2009

Silberberg M.S., Principles of General Chemistry, McGraw Hill International Edition, New York, USA 2007

Tchobanoglous G., Burton F., Stensel H.D., Wastewater Engineering Treatment and Reuse, Metcalf&Eddy, Inc, 2004

Gray N.F., Water Technology an Introduction for Environmental Scientists and Engineers, Elsevier, 2005

Evangelou V.P., Environmental Soil and Water Chemistry, Principles and Applications, A Wiley& Sons, Inc, 1998

SUBJECT COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

1. Beata Karwowska, <u>beata.karwowska@pcz.pl</u>

NAME OF LECTURER (s) (NAME, SURNAME, E-MAIL ADDRESS)

1. Beata Karwowska, <u>beata.karwowska@pcz.pl</u>