SYLLABUS OF A MODULE

Polish name of a module	Termodynamika
English name of a module	Thermodynamics
ISCED classification - Code	0715
ISCED classification - Field of study	0715
Languages of instruction	English
Level of qualification:	1 – BSc (EQF 6)
Number of ECTS credit points	6
Examination:	A
Available in semester:	Y

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
30	30	15	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. To familiarize with the issues of thermodynamics.
- O2. To acquire the ability to solve tasks and examples connected with thermodynamics issues.
- O3. To acquire practical skills in measuring physical quantities used in thermodynamics and interpretation of measurement results.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Fundamentals of mathematics, physics and chemistry.
- 2. Capability to use various information sources.
- 3. Ability of individual work and collaboration in a group.

LEARNING OUTCOMES

- LO 1 The student has knowledge of the content of lectures.
- LO 2 The student can solve tasks related to selected issues in thermodynamics.
- LO 3 The student has knowledge of the content of laboratory classes, and able to prepare a reports on conducted laboratory exercise.

MODULE CONTENT

	Number	
Type of classes – Lecture		
	hours	
Lec 1-2 - Basic concepts	2	
Lec 3-6 - Forms of energy, energy transfer by heat, energy transfer by		
work, the first law of thermodynamics, energy conversion efficiencies		
Lec 7-10 - Properties of pure substances, property diagrams for phase-		
change processes, the ideal gas equation of state	-	
Lec 11-14 - Energy analysis of closed systems, mass and energy	Λ	
analysis of control volumes	4	
Lec 15-18 - The second law of thermodynamics, heat engines,		
refrigerators and heat pumps, the Carnot cycle		
Lec 19-20 - Entropy and exergy analysis	2	
Lec 21-22 - Gas power cycles	2	
Lec 23-24 - Thermodynamic property relations	2	
Lec 25-28 - Gas mixtures, gas-vapour mixtures		
Lec 29-30 - Chemical reactions	2	
Sum	30	
	Number	
Type of classes– Tutorials	of	
	hours	
Tut 1-2 - Basic concepts, in examples	2	
Tut 3-6 - Forms of energy, energy transfer by heat, energy transfer by		
work, the first law of thermodynamics, energy conversion efficiencies, in		
examples		
Tut 7-10 - Properties of pure substances, property diagrams for phase-	4	

change processes, the ideal gas equation of state, in examples	
Tut 11 -14 - Energy analysis of closed systems, mass and energy analysis of control volumes, in examples	
Tut 15-18 - The second law of thermodynamics, heat engines, refrigerators and heat pumps, the Carnot cycle, in examples	4
Tut 19-20 - Entropy and exergy analysis, in examples	2
Tut 21-22 - Gas power cycles, in examples	
Tut 23-24 - Thermodynamic property relations, in examples	2
Tut 25-28 - Gas mixtures, gas-vapour mixtures, in examples	4
Tut 29-30 - Chemical reactions, in examples	2
Sum	30
Sum	30 Number
Sum Type of classes– Laboratory	30 Number of
Sum Type of classes– Laboratory	30 Number of hours
Sum Type of classes- Laboratory Lab 1-3 - Temperature measurements	30 Number of hours 3
Sum Type of classes- Laboratory Lab 1-3 - Temperature measurements Lab 4-6 - Pressure measurements	30 Number of hours 3 3
Sum Type of classes- Laboratory Lab 1-3 - Temperature measurements Lab 4-6 - Pressure measurements Lab 7-9 - Mass flow rate measurements	30 Number of hours 3 3 3 3
SumType of classes- LaboratoryLab 1-3 - Temperature measurementsLab 4-6 - Pressure measurementsLab 7-9 - Mass flow rate measurementsLab 10-12 - Humidity measurements	30 Number of hours 3 3 3 3 3
SumType of classes- LaboratoryLab 1-3 - Temperature measurementsLab 4-6 - Pressure measurementsLab 7-9 - Mass flow rate measurementsLab 10-12 - Humidity measurementsLab 13-15 - Density measurements	30 Number of hours 3 3 3 3 3 3 3

TEACHING TOOLS

1 - Multimedia presentations
2 - Laboratory measuring equipment
3 - Literature

WAYS OF ASSESSMENT (F – FORMATIVE, S – SUMMATIVE)

F1 assessment of activity during lectures
F2 assessment of activity during exercises
F3 assessment of activity during laboratory
S1 assessment of mastery of the teaching material being the subject of the
laboratory and ability to prepare reports on the implementation of laboratory
exercises*

S2. - assessment of mastery of the teaching material being the subject of the exercises*

S3. - assessment of mastery of the teaching material being the subject of the lecture*

*) in order to receive a credit for the module, the student is obliged to attain a passing grades in all laboratory classes as well as in achievement tests.

STUDENT'S WORKLOAD

		Average number of
L.p.	Forms of activity	hours required for
		realization of activity
1.	Contact hours with teacher	
1.1	Lectures	30
1.2	Tutorials	30
1.3	Laboratory	15
1.4	Seminar	0
1.5	Project	0
1.6	Examination	0
	Total number of contact hours with teacher:	75
2.	. Student's individual work	
2.1	Preparation for tutorials and tests	25
22	Preparation for laboratory exercises, writing	25
2.2	reports on laboratories	20
2.3	Preparation of project	0
2.4	Preparation for final lecture assessment	15
2.5	Preparation for examination	0
2.6	Individual study of literature	10
	Total number of hours of student's individual work:	75
	Overall student's workload:	150
Over	all number of ECTS credits for the module	6 ECTS
Num	ber of ECTS points that student receives in classes	3 ECTS
requi	requiring teacher's supervision:	
Num	ber of ECTS credits acquired during practical	1.8 ECTS

classes including laboratory exercises and projects:	

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Cengel, Y.A., Boles M.A., Canoglu M.: Thermodynamics. An engineering approach, 9th ed. New York, McGraw-Hill Education, 2019.
- 2. Moran M.J., Shapiro H.N.: Fundamentals of engineering thermodynamics, 5th ed. John Wiley & Sons, 2006.
- 3. Boxer G.: Engineering thermodynamics. Theory, worked examples and problems. THE MACMILLAN PRESS LTD London and Basingstoke, 1976.
- 4. Skačej G., Ziherl P.: Solved Problems in Thermodynamics and Statistical Physics. Springer, 2005.
- Szargut J.: Technical thermodynamics (Termodynamika techniczna, in Polish).
 Wydawnictwo Politechniki Śląskiej, Gliwice, 2005.
- 6. Laboratory materials.

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

dr hab. inż. Agnieszka Kijo-Kleczkowska, prof. PCz, a.kijo-kleczkowska@pcz.pl