SYLLABUS OF A MODULE

Polish name of a module	Analiza właściwości polimerów i kompozytów polimerowych	
English name of a module	TESTING OF POLYMERS AND COMPOSITES	
ISCED classification - Code	0722	
ISCED classification - Field of study	Materials (glass, paper, plastic and wood)	
Languages of instruction	English	
Level of qualification:	1 – BSc (EQF 6)	
Number of ECTS credit points	5	
Examination:	A - assignment	
Available in semester:	Y - both	

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
15	-	30	-	-	-

MODULE DESCRIPTION

Module objectives

- O1. Provide knowledge about selected methods of polymer properties analysis.
- O2. Provide knowledge about selected methods of polymer composites properties analysis.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Fundamentals of physics, chemistry, mathematics, mechanics and thermodynamics.
- 2. Fundamentals of materials science.
- Safety rules during the use of laboratory equipment and technological machines.
- 4. Capability of using source literature.
- 5. Capability of individual work and collaboration in a group.

6. Data analysis and presentation of results.

LEARNING OUTCOMES

- LO 1 Knowledge on polymeric materials and polymeric composites.
- LO 2 Knowledge on selected methods of polymer materials and polymers composites properties analysis.
- LO 3 Ability to independently conduct the experiment and interpret the results.

MODULE CONTENT

	Number
Type of classes – lecture	of
	hours
Lec 1 – Standardized test methods for polymers	1
Lec 2 - Preparation of samples for testing, conditioning	
Lec 3 – 4 Assessment of physical properties of granules, density,	
humidity, moisture absorption)	
Lec 5 - 7 Mechanical properties (tensile strength, hardness, impact	
strength, dynamic tests, drop test)	
Lec 8 – 9 Testing the properties of the top layer (surface structure, color,	
gloss, adhesion, wettability, coefficient of friction)	
Lec 10 -12 Thermal properties tests (expansion, thermal shrinkage,	
thermal conductivity, Vicat and HDT temperature, DSC, TGA)	
Lec 13 - Flammability tests of plastics using methods UL94, GWFI, GWIT	
Lec 14 - Assessment of the supermolecular structure of polymers and the	
filler content	
Lec 15 - Fatigue tests, residual stress	1
Sum	15
	Number
Type of classes – laboratory	of
	hours
Lab 1 - Introduction to laboratory classes, OHS training in the laboratory	1
Lab 2-3 - Methods of preparing research samples	
Lab 4-6 - Assessment of physical properties of granules, density,	3

humidity, moisture absorption)	
Lab 7-12 - Mechanical properties tests (tensile strength, hardness,	
impact strength, drop test)	
Lab 13-14 - Tests of the surface layer properties - color, gloss, wettability	2
Lab 15-18 - Thermal properties tests (expansion, thermal shrinkage,	4
thermal conductivity, Vicat and HDT temperature)	
Lab 19-21 - Flammability of plastics by UL94, GWFI, GWIT methods	3
Lab 22-23 - Conditioning of polymeric materials and its influence on	2
properties	
Lab 24-25 - Assessment of the supermolecular structure of polymers and	2
the filler content	
Lab 26 – 27 Fatigue tests of polymers	2
Lab 28-30 - The elasto-optic method for the evaluation of residual	3
stresses and elements under load	
Sum	30

TEACHING TOOLS

 I – lecture with the use of multimedia presentations 	
2 – stands equipped with machines and other equipment for polymer processing	

3 – instructions to laboratory exercises

WAYS OF ASSESSMENT (F – FORMATIVE, S – SUMMATIVE

F1. - assessment of preparation for laboratory exercises

F2. - assessment of the ability to apply the acquired knowledge while doing the

exercises

F3. - evaluation of reports on the implementation of exercises covered by the curriculum

F4. - assessment of activity during classes

S1. - assessment of the ability to solve the problems posed and the manner of

presentation

obtained results - pass mark *

S2. - assessment of mastery of the teaching material being the subject of the lecture

- exam

*) in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

STUDENT'S WORKLOAD

		Average number of			
L.p. Forms of activity		hours required for			
		realization of activity			
1	1. Contact hours with teacher				
1.1	Lectures	15			
1.2	Tutorials				
1.3	Laboratory	30			
1.4	Seminar	-			
1.5	Project	-			
1.6	Examination	5			
	Total number of contact hours with teacher:	50			
2. Student's individual work					
2.1	Preparation for tutorials and tests	20			
22	Preparation for laboratory exercises, writing	10			
2.2	reports on laboratories	10			
2.3	Preparation of project	-			
2.4	Preparation for final lecture assessment	-			
2.5	Preparation for examination	10			
2.6	Individual study of literature	35			
	Total number of hours of student's individual work:	75			
	Overall student's workload:	125			
Overall number of ECTS credits for the module		5 ECTS			
Number of ECTS points that student receives in classes		1.8 ECTS			
requiring teacher's supervision:		.,0.0			
Number of ECTS credits acquired during practical		1,6 ECTS			
classes including laboratory exercises and projects:					

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Pyzdek T., Keller P., The Handbook for Quality Management A Complete Guide to Operational Excellence, The McGraw-Hill Companies, 2013
- 2. Fied J., POLYMER SCIENCE AND TECHNOLOGY Third Edition, Pearson Education, Inc., 2014
- 3. Grellmann W., Seidler S., Polymer Solids and Polymer Melts, Part 3 Mechanical and thermomechanical Properties of Polymers, Springer, 2014
- 4. Ramdani N., Polymer and Ceramic Composite Materials, CRC Press Taylor & Francis Group, 2019
- 5. Van Krevelen D.W., PROPERTIES OF POLYMERS, Elsevier, 2009
- Mark J.E., Physical Properties of Polymers Handbook, Second Edition, Springer 2007

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

Module coordinator:

Tomasz Stachowiak, tomasz.stachowiak@pcz.pl

Academic teachers:

Tomasz Stachowiak, tomasz.stachowiak@pcz.pl

Przemysław Postawa, przemyslaw.postawa@pcz.pl

Milena Trzaskalska, milena.trzaskalska@pcz.pl

Tomasz Jaruga, tomasz.jaruga@pcz.pl

Paweł Palutkiewicz, pawel.palutkiewicz@pcz.pl