SYLLABUS OF A MODULE

Polish name of a module	Podstawy spalania
English name of a module	Combustion
ISCED classification - Code	0715
ISCED classification - Field of study	Mechanics and metal trades
Languages of instruction	English
Level of qualification:	2
Number of ECTS credit points	5
Examination:	EW
Available in semester:	Υ

Number of hours per semester:

Le	ecture	Exercises	Laboratory	Seminar	E-learning	Project
	30	30	0	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Students know theory of combustion fundamentals.
- O2. Students acquire skills in combustion issues calculations.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Fundamentals of mathematics and thermodynamics.
- 2. Fundamentals of thermal machinery principles.
- 3. Capability of using source literature.
- 4. Data analysis and presentation of results.

LEARNING OUTCOMES

- LO 1 The student possesses knowledge on combustion
- LO 2 The student possesses knowledge on fundamentals of construction and

operation of thermal machinery

LO 3 – The student has ability to determine basic parameters in various combustion processes.

MODULE CONTENT

	Number
Type of classes – lecture	of
	hours
Lec 1 – Fundamental laws in thermodynamics and combustion science.	1
Lec 2-3 – Combustion definition. Premixed and diffusion combustion.	
Deflagration and detonation. Global reaction of combustion.	2
Stoichiometry. Flammability limits. Enthalpy. UHV, LHV. Fuel	
specifications.	
Lec 4-5 – Thermochemistry. Energy conservation law. Combustion at	
constant pressure and constant volume. Adiabatic flame	
temperature. Reactants and products. Chemical equilibrium.	2
Dissociation. Gibbs function. Equilibrium constant.	
Lec 6 – Introduction to collision theory. Elementary reactions and rates.	1
Lec 7-8 - Combustion mechanism. types of elementary reactions. Time	2
scales.	2
Lec 9-10 - Selected combustion mechanisms: H ₂ -O ₂ , CO-O ₂ , methane,	2
NO_x formation.	2
Lec 11-13 – Laminar premixed combustion. Description. Simplified	
analysis. Flame analysis in the Bunsen burner. Flame thickness.	3
Laminar flame speed. Combustion in the spark ignited engine.	
L 14 - Ignition. Theory and models by Semenov and Frank-Kamenetski.	1
L 15-16 - Laminar diffusion combustion. Flame length. Soot formation.	2
Lec 17 – Introduction to turbulent combustion.	1
Lec 18-19 – Combustion of liquid fuels. Simplified model of droplet	
evaporation and combustion. Combustion in the compression	2
ignition engine.	
Lec 20-21 – Solid fuel combustion. Models of carbon particle combustion.	
Examples. Coal burner description.	2

Suma	30
Tut 29-30 – Calculation of detonation flame velocity.	2
Tut 27-28 - Calculations of laminar flame speed.	2
Tut 23 -26 - Solid particle combustion - one film model.	4
and exergy balance.	
Tut 19-22 - Determination of energy losses and boiler efficiency. Energy	4
gases.	
Tut 15-18 – Calculations of volumetric composition of the wet and dry flue	4
Tut 11-14 – Calculations of adiabatic flame temperature at C _P and C _V .	4
Tut 9-10 – Thermodynamic equilibrium with species dissociation.	2
heating value (LHV) and higher heating value (HHV) of fuels.	4
Tut 5-8 – Calculations of enthalpy of reaction, heat of combustion, lower	4
stoichiometric ratio. Equivalence ratio.	
fuels. Reaction rate. Mole and mass fractions. Air-to-fuel	4
TUT 1-4 – Calculations of combustion process of gaseous, liquid and solid	
	hours
Type of classes – tutorial	of
	Number
Suma	30
Lec 29-30 – Trends in clean combustion technologies.	2
treatment. 3-way catalytic converter. SCR and NSCR. PM traps.	2
Lec 27-28 – Methods for toxic substances removal. Pretreatment and after	2
emissions.	2
Lec 25-26- Toxic products of combustion. Regulations and limits for toxic	2
Lec 24 – Measurements in combustion.	1
detonation wave. Detonation speed.	2
Lec 22-23 – Detonation combustion. Rankine-Hugoniot curve. Structure of	2

TEACHING TOOLS

- 1. Lecture with the use of multimedia presentations
- 2. Tutorials of combustion calculation
- 3. Instructions to classes
- 4. Own codes and commercial software

WAYS OF ASSESSMENT (F - FORMATIVE, S - SUMMATIVE)

- **F1.** assessment of the ability to apply the acquired knowledge while doing the exercises
- **F2.** evaluation of reports on the implementation of exercises covered by the curriculum
- F3. assessment of activity during classes
- **S1.** assessment of the ability to solve the problems posed and the manner of presentation

obtained results - pass mark *

- **S2.** assessment of mastery of the teaching material being the subject of the lecture exam
- *) in order to receive a credit for the module, the student is obliged to attain a passing grade in all classes as well as in achievement tests.

STUDENT'S WORKLOAD

L.p.	Forms of activity	Average number of hours required for		
		realization of activity		
1.	1. Contact hours with teacher			
1.1	Lectures	30		
1.2	Tutorials	30		
1.3	Laboratory	0		
1.4	Seminar	0		
1.5	Project	0		
1.6	Examination	3		
	Total number of contact hours with teacher:	68		
2. Student's individual work				
2.1	Preparation for tutorials and tests	17		
2.2	Preparation for laboratory exercises, writing	0		
2.2	reports on laboratories	· ·		
2.3	Preparation of project	0		
2.4	Preparation for final lecture assessment	0		

2.5 Preparation for examination		20
2.6	Individual study of literature	20
Total number of hours of student's individual work:		57
	Overall student's workload:	125
Overall number of ECTS credits for the module		5 ECTS
Number of ECTS points that student receives in classes requiring teacher's supervision:		2.52 ECTS
Number of ECTS credits acquired during practical classes including laboratory exercises and projects:		1.20 ECTS

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Cengel Y, Boles M, Thermodynamics: An Engineering Approach, McGraw-Hill Education; 8 edition, 2014
- Moran JN, Shapiro HN, Principles of Engineering Thermodynamics, John Wiley
 Sons Inc, 2015
- 3. Mayhew Y, Rogers GFC, Mayhew YR, Engineering Thermodynamics : Work and Heat Transfer, Longman, Pearson Education Limited, 1996
- 4. Borman GL, Ragland K.M.: Combustion Engineering, McGraw Hill, 1998
- 5. Drysdale D, An introduction to fire dynamics, New York, Wiley&Son 1990
- 6. Glassman I, Yetter R.A.: Combustion, Academic Press, 2008
- 7. Turns S, An Introduction to Combustion: Concepts and Applications, McGraw-Hill, 2000
- Warnatz J, Maas U, Dibble RW, Combustion: Physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, Springer 2001

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

Prof. dr hab. inż. Stanisław Szwaja, stanisław.szwaja@pcz.pl