SYLLABUS OF A MODULE

Polish name of a module	Mechanika płynów	
English name of a module	Fluid mechanics	
ISCED classification - Code	0710	
ISCED classification - Field of study	Engineering & engineering trades	
Languages of instruction	English	
Level of qualification:	1	
Number of ECTS credit points	6	
Examination:	EW	
Available in semester:	Y	

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
30E	15	15	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Understanding the fundamental properties of fluids, properties of pressure as a scalar quantity, hydrostatic pressure and hydrostatic forces
- O2. Understanding various methods of fluid motion description, understanding basic properties of fluid motion for ideal and viscous fluids
- O3. Ability to use the one dimensional theory of fluid motion for ideal and viscous fluids to solve practical problems

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knowledge on the mathematical analysis and physics
- 2. Knowledge of the basic course of mechanics
- 3. Ability of individual work

LEARNING OUTCOMES

- LO 1 theoretical and practical knowledge in statics of fluid mechanics
- LO 2 theoretical and practical knowledge in kinematics and dynamics of perfect fluids
- LO 3 theoretical and practical knowledge in kinematics and dynamics of real fluids

MODULE CONTENT

	Number
Type of classes - lecture	of
	hours

viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum 30 Number of classes - tutorial	Lab 5 - Determination of the volumetric-rate correction factor (Coriolis coefficient) Lab 6 - Determination of axisymmetric diffuser efficiency Lab 7 - Characteristics of the nozzle flow fed from the open tank Lab 8 - Determination of a metacentric height for floating bodies Lab 9 - Determination of hydrostatic force and its application point for arbitrarily oriented flat surfaces Lab 10 - Verification of Stevin's theorem Lab 11 - Determination of the critical Reynolds number for circular pipe flow Lab 12-13 - Energy losses in the flow through a pipeline Lab 14-15 - Measurement of flow velocity in a pipeline, determination of hydrostatic	1 1 1 1 1 2
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 23-36 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum 30 Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. 2 - Tut 3-4 - Equilibrium of steady fluid. 2 - Tut 3-4 - Equilibrium of steady fluid. 2 - Tut 4-5 - Hydrostatic forces acting on plane arbitrarily oriented surfaces 1 - Tut 9-10 - Flow kinematics 2 - Tut 9-10 - Flow kinematics 2 - Tut 9-10 - Flow kinematics 1 - Tut 9-10 - Flow kinematics 2 - Tut 9-10 - Flow kinematics 1 - Tut 9-10 - Flow kinematics 1 - Lab 3-4 - Drag coefficient of streamlined and bluff bodies Lab 1 - Measurements of basic flow parameters by pressure tubes and taps 1 - Lab 3-4 - Drag coefficient of streamlined and bluff bodies Lab 5 - Determination of a metacentric height for floating bodies Lab 5 - Determination of a metacentric height for floating bodies Lab 6 - Determi	Lab 5 - Determination of the volumetric-rate correction factor (Coriolis coefficient) Lab 6 - Determination of axisymmetric diffuser efficiency Lab 7 - Characteristics of the nozzle flow fed from the open tank Lab 8 - Determination of a metacentric height for floating bodies Lab 9 - Determination of hydrostatic force and its application point for arbitrarily oriented flat surfaces Lab 10 - Verification of Stevin's theorem Lab 11 - Determination of the critical Reynolds number for circular pipe flow Lab 12-13 - Energy losses in the flow through a pipeline	1 1 1 1 1
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N-S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Type of classes - tutorial Let 11-12 - Bernoulli equation for ideal fluids Type of classes - laboratory Type of classes - laboratory Type of classes - laboratory Lab 1 - Neasurements of basic flow parameters by pressure tubes and taps Lab 2 - Flow around the circular cylinder Lab 3 - Determination of the volumetric-rate correction factor (Coriolis coefficient) Lab 3 - Determination of the volumetric-rate correc	Lab 5 - Determination of the volumetric-rate correction factor (Coriolis coefficient) Lab 6 - Determination of axisymmetric diffuser efficiency Lab 7 - Characteristics of the nozzle flow fed from the open tank Lab 8 - Determination of a metacentric height for floating bodies Lab 9 - Determination of hydrostatic force and its application point for arbitrarily oriented flat surfaces Lab 10 - Verification of Stevin's theorem	1 1 1
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N-5 equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. Tut 3-4 - Equilibrium of steady fluid. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 3-5 - Pascal's law 1 Tut 6 - Hydrostatic forces acting on plane arbitrarily oriented surfaces Tut 1-12 - Bernoulli equation for ideal fluids Tut 1-12 - Bernoulli equation for ideal fluids Tut 1-13 - Hydrostatic forces acting on curved surfaces 1 Tut 1-15 - Bernoulli equation for viscous fluids 2 Tut 1-15 - Bernoulli equation for viscous fluids 1 Lab 2 - Flow around the circular cylinder Lab 3 - Determination of a wetacentric height for floating bodies Lab 5 - Determination of a metacentric height for floating bodies Lab 5	Lab 5 - Determination of the volumetric-rate correction factor (Coriolis coefficient) Lab 6 - Determination of axisymmetric diffuser efficiency Lab 7 - Characteristics of the nozzle flow fed from the open tank Lab 8 - Determination of a metacentric height for floating bodies Lab 9 - Determination of hydrostatic force and its application point for arbitrarily oriented flat surfaces	1 1 1
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N-5 equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. 2 - Tut 3-4 - Equilibrium of steady fluid. 2 - Tut 4-1 - Pascal's law Tut 6 - Hydrostatic forces acting on curved surfaces 1 - Tut 7-8 - Hydrostatic forces acting on curved surfaces 2 - Tut 1-12 - Bernoulli equation for ideal fluids 2 - Tut 1-12 - Bernoulli equation for ideal fluids Tut 1-1 - Bernoulli equation for ideal fluids 2 - Tut 1-1 - Bernoulli equation for ideal fluids 2 - Tut 1-1 - Bernoulli equation for ideal fluids 2 - Tut 1-1 - Bernoulli equation for ideal fluids 1 - Lab 2 - Flow around the circular cylinder Lab 3 - Determination of streamlined and bluff bodies Lab 5 - Determination of a metacentric height for floating bodies Lab 5 - Determination o	Lab 5 - Determination of the volumetric-rate correction factor (Coriolis coefficient) Lab 6 - Determination of axisymmetric diffuser efficiency Lab 7 - Characteristics of the nozzle flow fed from the open tank Lab 8 - Determination of a metacentric height for floating bodies Lab 9 - Determination of hydrostatic force and its application point for arbitrarily	1
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N— sequations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. Tut 3 - 4. Equilibrium of steady fluid. 2 - Tut 3 - 4. Equilibrium of steady fluid. 2 - Tut 3 - 4. Equilibrium of steady fluid. 2 - Tut 3 - 4. Equilibrium of steady fluid. 2 - Tut 1-2 - Bernoulli equation for viscous fluids Tut 1-3 - Flow kinematics 2 - Tut 1-12 - Bernoulli equation for viscous fluids Tut 1-12 - Bernoulli equation for deal fluids Tut 1-12 - Bernoulli equation for viscous fluids 1 - Measurements of basic flow parameters by pressure tubes and taps Lab 2 - Flow around the circular cylinder Lab 3 - Determination of the volumetric-rate correction factor (Coriolis coefficient) Lab 5 - Determination of axisymmetric diffuser efficiency Lab 7 - Characte	Lab 5 - Determination of the volumetric-rate correction factor (Coriolis coefficient) Lab 6 - Determination of axisymmetric diffuser efficiency Lab 7 - Characteristics of the nozzle flow fed from the open tank Lab 8 - Determination of a metacentric height for floating bodies	1
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascaf's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N-S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. Tut 3-4 - Equilibrium of steady fluid. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 3-5 - Pascal's law Tut 6- Hydrostatic forces acting on plane arbitrarily oriented surfaces 1 Tut 7-8 - Hydrostatic forces acting on curved surfaces 1 Tut 1-12 - Bernoulli equation for ideal fluids 2 Tut 1-12 - Bernoulli equation for viscous fluids 2 Tut 1-15 - Bernoulli equation for viscous fluids 2 Lab 1- Measurements of basic flow parameters by pressure tubes and taps Lab 2 - Flow around the circular cylinder Lab 3- Determination of the volumetric-rate correction factor (Coriolis coefficient) Lab 5 - Determination of the volumetric-rate correction factor (Coriolis coefficient) Lab 6 - Determination of saxisymmetric diffuser efficiency Lab 7 - Characteristics of th	Lab 5 - Determination of the volumetric-rate correction factor (Coriolis coefficient) Lab 6 - Determination of axisymmetric diffuser efficiency Lab 7 - Characteristics of the nozzle flow fed from the open tank	1
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascai's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. Tut 3-4 - Equilibrium of steady fluid. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 7-8 - Hydrostatic forces acting on plane arbitrarily oriented surfaces 1 Tut 7-8 - Hydrostatic forces acting on curved surfaces 1 Tut 7-8 - Hydrostatic forces acting on curved surfaces 1 Tut 1-12 - Bernoulli equation for ideal fluids Tut 13 - Linear momentum equations for 1D flow of ideal fluid Tut 14-15 - Bernoulli equation for viscous fluids 2 Tut 14-15 - Bernoulli equation for viscous fluids 1 Lab 2 - Flow around the circular cylinder Lab 3-4 - Drag coefficient of streamlined and bluff bodies Lab 5 - Determination of the volumetric-rate correction factor (Coriolis coefficient	Lab 5 - Determination of the volumetric-rate correction factor (Coriolis coefficient) Lab 6 - Determination of axisymmetric diffuser efficiency	+
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N- S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum 30 Type of classes - tutorial Tut 12 - Basic physical properties of fluids. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 5 - Pascal's law 1 Tut 7-8 - Hydrostatic forces acting on plane arbitrarily oriented surfaces Tut 11-12 - Bernoulli equation for ideal fluids Tut 7-8 - Hydrostatic forces acting on curved surfaces Tut 11-12 - Bernoulli equation for ideal fluids Tut 13 - Linear momentum equations for 1D flow of ideal fluid Tut 14-15 - Bernoulli equation for viscous fluids 2 Tut 13 - Linear momentum equations for 1D flow of ideal fluid Tut 14-15 - Bernoulli equation for viscous fluids 2 Lab 2 - Flow around the circular cylinder Lab 3-4 - Drag coefficient of streamlined and bluff bodies 2 Lab 5 - Determination of the volumetric-rate	Lab 5 - Determination of the volumetric-rate correction factor (Coriolis coefficient)	1
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N-S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for ideal fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. 2 tut 3- Lequilibrium of steady fluid. Tut 3- Hydrostatic forces acting on plane arbitrarily oriented surfaces 1 tut 7-8 - Hydrostatic forces acting on plane arbitrarily oriented surfaces 1 tut 1-12 - Bernoulli equation for ideal fluids 2 tut 11-12 - Bernoulli equation for ideal fluids 2 tut 11-12 - Bernoulli equation for ideal fluids 2 tut 11-15 - Bernoulli equation for ideal fluids 2 tut 13 - Linear momentum equations for 1D flow of ideal fluid Tut 14-15 - Bernoulli equation for ideal fluids 2 tut 13 - Linear momentum equations for 1D flow of ideal fluid 1 tut 14-15 - Bernoulli equation for ideal fluids 2 tut 13 - Linear momentum equations for 1D flow of ideal fl		+
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N— S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum 30 Type of classes - tutorial of the hydrostatic forces acting on plane arbitrarily oriented surfaces Tut 1-2 - Basic physical properties of fluids. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 5-8 - Hydrostatic forces acting on plane arbitrarily oriented surfaces Tut 1-12 - Bernoulli equation for ideal fluids 2 Tut 1-12 - Bernoulli equation for viscous fluids 1 Tut 7-8 - Hydrostatic forces acting on plane arbitrarily oriented surfaces Tut 1-12 - Bernoulli equation for ideal fluids 1 Tut 1-15 - Bernoulli equation for viscous fluids 1 Tut 1-15 - Bernoulli equation for viscous fluids 1 Lab 2 - Flow around the circular cylinder	Lap 3-4 - Dias coemicient of Streammed and Dian Dodies	
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N— S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum 30 Type of classes - tutorial Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 7-8 - Hydrostatic forces acting on plane arbitrarily oriented surfaces 1 Tut 7-8 - Hydrostatic forces acting on plane arbitrarily oriented surfaces 1 Tut 7-8 - Hydrostatic forces acting on plane arbitrarily oriented surfaces 1 Tut 1-12 - Bernoulli equation for ideal fluids 2 Tut 11-12 - Bernoulli equation for ideal fluids 1 Tut 14-15 - Bernoulli equation for viscous fluids 2 Tut 11-12 - Bernoulli equation for viscous fluids 1 Tut 14-15 - Bernoulli equation for viscous fluids	·	+
Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 3-4 - Equilibrium of steady fluids. 2 Tut 3-4 - Equilibrium of steady fluids. 2 Tut 1-7-8 - Hydrostatic forces acting on curved surfaces 1 Tut 7-8 - Hydrostatic forces acting on curved surfaces 2 Tut 9-10 - Flow kinematics 1 Tut 1-12 - Bernoulli equation for ideal fluids 2 Tut 13 - Linear momentum equations for 1D flow of ideal fluid Tut 14-15 - Bernoulli equation for viscous fluids 5 Valuable fluid fl		
Lec 27-20 - Description of fluid motion: Lec 21-24 - Bernoulli equation for ideal fluids: Lec 21-25-26 - Bernoulli equation for viscous fluids: Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow closes, flows through a pipeline network. Sum Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. Tut 7-8 - Hydrostatic forces acting on plane and surfaces, hydrostatic forces acting on immersed and floating bodies. Lec 21-24 - Bernoulli equation for viscous fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 21-25 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum 30 Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 5 - Pascal's law 1 Tut 6 - Hydrostatic forces acting on plane arbitrarily oriented surfaces 1 Tut 7-8 - Hydrostatic forces acting on plane arbitrarily oriented surfaces Tut 1-12 - Bernoulli equation for ideal fluids 2 Tut 13 - Linear momentum equations for 1D flow of ideal fluid Tut 14-15 - Bernoulli equation for viscous fluids 1 Sum 15 Number		hours
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N-S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 5 - Pascal's law 1 Tut 6 - Hydrostatic forces acting on plane arbitrarily oriented surfaces 1 Tut 7-8 - Hydrostatic forces acting on curved surfaces 2 Tut 9-10 - Flow kinematics 1 Tut 7-10 - Bernoulli equation for ideal fluids 2 Tut 11-12 - Bernoulli equation for ideal fluids 2 Tut 11-12 - Bernoulli equation for viscous fluids		Number
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 21-25 - Bernoulli equation for viscous fluids: energy losses in viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Type of classes - tutorial Type of classes - tutorial Type of classes - tutorial Tut 5 - Pascal's law 1 Tut 5 - Pascal's law 1 Tut 6 - Hydrostatic forces acting on plane arbitrarily oriented surfaces 1 Tut 7-8 - Hydrostatic forces acting on curved surfaces Tut 7-9 - Flow kinematics 2 Tut 1-12 - Bernoulli equation for ideal fluids Tut 13 - Linear momentum equations for 1D flow of ideal fluid	sum	15
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 5 - Pascal's law Tut 6 - Hydrostatic forces acting on plane arbitrarily oriented surfaces 1 Tut 7-8 - Hydrostatic forces acting on curved surfaces Tut 9-10 - Flow kinematics 2 Tut 9-10 - Flow kinematics		2
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N— S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum 30 Number of classes - tutorial of the correct pipe diameter for a given fluid flux, flow through a pipeline network. Lec 27-30 - Flow of viscous fluid. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 5 - Pascal's law Tut 6 - Hydrostatic forces acting on plane arbitrarily oriented surfaces 1 Tut 7-8 - Hydrostatic forces acting on curved surfaces 2 Tut 9-10 - Flow kinematics		
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N-S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Type of classes - tutorial Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 5 - Pascal's law Tut 6 - Hydrostatic forces acting on plane arbitrarily oriented surfaces 1 Tut 7-8 - Hydrostatic forces acting on curved surfaces		+
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Type of classes - tutorial Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 5 - Pascal's law Tut 6 - Hydrostatic forces acting on plane arbitrarily oriented surfaces	·	
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum 30 Number Type of classes - tutorial Tut 1-2 - Basic physical properties of fluids. 2 Tut 3-4 - Equilibrium of steady fluid. 2 Tut 5 - Pascal's law 1		+
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum 30 Number of classes - tutorial Tut 1-2 - Basic physical properties of fluids. 2 Tut 3-4 - Equilibrium of steady fluid.		
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Number of classes - tutorial Type of classes - tutorial		+
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Number of classes - tutorial		
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum Number of classes - tutorial	Tut 1-2 - Basic physical properties of fluids.	
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum 30 Number	Type of classes - tutorial	
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter for a given fluid flux, flow through a pipeline network. Sum 30	Type of classes tutorial	
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative calculation of flow losses, flows through long pipelines, finding the correct pipe diameter	Sum	+
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid. Lec 27-30 - Flow of viscous fluid in a pipeline: flow in a non-circular ducts, iterative		
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and minor losses, interpretation of energy transformations in flow of viscous fluid.	· ·	4
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes. Lec 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major and		1
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods. Lec 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline for ideal fluid, measurement of flow velocity with pressure tubes.	•	2
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. Lec 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion, fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N— S equations and their solution methods.	ideal fluid, measurement of flow velocity with pressure tubes.	4
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law. Lec 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces, hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating bodies. 6	fluid element trajectory and streamline, streamtube, continuity condition, Euler's and N—S equations and their solution methods.	4
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. 2 Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure, reference level for pressure measurement, Pascal's law.	bodies.	6
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field. Lec 7-10 - Connected vessels principle: liquid manometers, atmospheric pressure,	•	-
viscosity as a physical property of fluids and the property of fluid motion. Lec 5-6 - Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field.		4
viscosity as a physical property of fluids and the property of fluid motion.	, , , , , , , , , , , , , , , , , , , ,	
		2
I physical properties of fluids, action of normal and shear forces upon the fluid element		4
Lec 1-4 - Basic concepts: solid body versus fluid mechanics, fluid as a continuum, basic	physical properties of fluids, action of normal and shear forces upon the fluid element,	

sum	15	
-----	----	--

TEACHING TOOLS

- 1. Lecture with Power Point presentation, lecture notes, sample problems
- 2. Tutorials with Power Point presentation, tutorial book
- 3. Experimental rigs and measuring equipment
- Laboratory tutorials

WAYS OF ASSESSMENT (F - FORMATIVE, S - SUMMATIVE)

- **F1** assessment of preparation for laboratory exercises
- F2 assessment of the ability to apply the acquired knowledge while doing the exercises
- F3 evaluation of reports on the implementation of exercises covered by the curriculum
- **F4** assessment of activity during classes
- ${\bf S1}$ assessment of the ability to solve the problems posed and the manner of presentation obtained results pass mark *
- **S2** assessment of mastery of the teaching material being the subject of the lecture exam

STUDENT'S WORKLOAD

No	Forms of activity	Average number of hours required for realization of activity
1	. Contact hours with teacher	
1.1	Lectures	30
1.2	Tutorials	15
1.3	Laboratory	15
1.4	Seminar	0
1.5	Project	0
1.6	Examination	3
	Total number of contact hours with teacher:	63
2	. Student's individual work	
2.1	Preparation for tutorials and tests	30
2.2	Preparation for laboratory exercises, writing reports on laboratories	30
2.3	Preparation of project	0
2.4	Preparation for final lecture assessment	0
2.5	Preparation for examination	20
2.6	Individual study of literature	15
Total number of hours of student's individual work:		87
	Overall student's workload:	150
Overa	ll number of ECTS credits for the module	6
Number of ECTS points that student receives in classes requiring teacher's		2.52 ECTS

^{*)} in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

supervision:	
Number of ECTS credits acquired during practical classes including laboratory exercises and projects:	2.4 ECTS

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Drobniak S.: Fluid Mechanics an Introduction. TEMPUS PROJECT, CzUT publication, 2002.
- 2. Shaughnessy E.J., Katz I.M., Schaffer J.P.: Introduction to Fluid Mechanics. Oxford University Press, 2005
- 3. White F.M.: Fluid Mechanics. McGraw-Hill, 2003
- 4. Evett J.B., Liu C., Fundamentals of Fluid Mechanics. McGraw-Hill, 1987
- 5. Durst F.: Fluid Mechanics. An introduction to the theory of fluid flows. Springer-Verlag, Berlin, 2008

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

dr Dariusz Asendrych, dariusz.asendrych@pcz.pl