SYLLABUS OF A MODULE

Polish name of a module	Termodynamika
English name of a module	Thermodynamics
ISCED classification - Code	0715
ISCED classification - Field of study	0715
Languages of instruction	English
Level of qualification:	1 – BSc (EQF 6)
Number of ECTS credit points	6
Examination:	EW
Available in semester:	Υ

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
30 E	15	15	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Understanding the fundamental energy conversion processes.
- O2. Understanding and ability to use of the first and second law of thermodynamics.
- O3. Understanding the pure substance properties and their mixtures.
- O4. Understanding the thermodynamic cycles and cycles efficiency.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knowledge on the mathematical analysis
- 2. Capability to use various information sources, including technical manuals.
- 3. Capability of individual work.
- 4. Data analysis and presentation of results

LEARNING OUTCOMES

- LO 1 Knowledge on fundamental energy conversion processes and thermodynamics laws
- LO 2 Knowledge on thermodynamic cycles and their efficiencies
- LO 3 Capability of thermodynamic cycles efficiency calculations

MODULE CONTENT

	Number
Type of classes – Lecture	of
	hours
Lec 1-2 - Basic concepts: nature of thermodynamics, system and control volumes, continuum concept, state and equilibrium, processes and cycles, temperature and zero th law of thermodynamics	2
Lec 3-6 - Energy, energy transfer, general energy analysis: internal energy, heat transfer, work, first law of thermodynamics, energy conversion efficiency	4
Lec 7-8 - Properties of pure substances: concept of a pure substance, phase-change processes, ideal gas, ideal gas equation of state, application of other state equations	2
Lec 9-10 - Energy analysis of closed systems	2
Lec 11-12 - Mass and energy analysis of control volume	2
Lec 13-14 - Second law of Thermodynamics	2
Lec 13-16 - Entropy and Exergy analysis	4
Lec 17-18 - Maxwell relations, Gibbs and Helmholtz functions	2
Lec 19-22 - Gas Power cycles	4
Lec 23-26 - Gas mixtures, gas and vapour mixtures, Rankine cycle	4
Lec 27-30 - Thermodynamics of chemical reactions: phase and chemical equilibrium	4
Sum	30
Juili	
Type of classes— Tutorials	Number of
	hours
Tut 1 - Basic concepts	1
Tut 2-3 - Energy, energy transfer, general energy analysis: internal energy, heat transfer, work, first law of thermodynamics, energy conversion efficiency	2
Tut 4-5 - Properties of pure substances: concept of a pure substance, phase-change processes, ideal gas, ideal gas equation of state, application of other state equations	2
Tut 6 -7 - Energy analysis of closed systems and Mass and energy analysis of control volume	2
Tut 8-9 - Second law of Thermodynamics, Entropy and exergy analysis	2
Tut 10-11 - Gas Power cycles	2
Tut 12-13 - Gas mixtures, gas and vapour mixtures	2
Tut 14-15 - Thermodynamics of chemical reactions	2
Sum	15
	Number
Type of classes— Laboratory	of
Type of classes Laboratory	hours
Lab 1-2 Measurement precision	2
Lab 3-4 –Temperature measurements	2
Lab 5-6 – Pressure measurements	2
Lab 7-8 – Mass flow rate measurements	2
Lab 9-10 — Specific heat capacity	2
Lab 11-12 – Humidity measurements	2
Lab 13-14 — Experimental determination of overall heat transfer coefficient	2
Lab 15 – Density measurements	1
Sum	15
Suii	1.5

TEACHING TOOLS

1 - Lecture notes	
2 – Literature	
3 - Thermodynamics laboratory	

- **F1.** assessment of preparation for laboratory exercises
- F2. assessment of the ability to apply the acquired knowledge while doing the exercises
- F3. evaluation of reports on the implementation of exercises covered by the curriculum
- F4. assessment of activity during classes
- **S1.** assessment of the ability to solve the problems posed and the manner of presentation obtained results pass mark *
- **S2.** assessment of mastery of the teaching material being the subject of the lecture exam

STUDENT'S WORKLOAD

L.p.	Forms of activity	Average number of hours required for realization of activity				
1	1. Contact hours with teacher					
1.1	Lectures	30				
1.2	Tutorials	15				
1.3	Laboratory	15				
1.4	Seminar	0				
1.5	Project	0				
1.6	Examination	3				
	Total number of contact hours with teacher:	68				
2	2. Student's individual work					
2.1	Preparation for tutorials and tests	25				
2.2	Preparation for laboratory exercises, writing reports on laboratories	25				
2.3	Preparation of project	0				
2.4	Preparation for final lecture assessment	0				
2.5	Preparation for examination	22				
2.6	Individual study of literature	10				
	Total number of hours of student's individual work:	82				
	Overall student's workload:	150				
Overall number of ECTS credits for the module		6 ECTS				
Number of ECTS points that student receives in classes requiring teacher's supervision:		2.52 ECTS				
	er of ECTS credits acquired during practical classes including laboratory ses and projects:	2.32 ECTS				

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Shavit A., Gutfinger C., Thermodynamics: From Concepts to Applications, CRC Press, 2008
- 2. Engel T., Reid P., Thermodynamics, Statistical Thermodynamics, & Kinetics, Benjamin Cummings, 2006
- 3. Janna W.S., Engineering Heat Transfer, Third Edition, CRC Press, 2009
- 4. Cengel, Y.A., Boles M.A., Thermodynamics, an engineering approach, 5th ed., New York, McGraw-Hill, 2006
- 5. Moran M.J., Shapiro H.D.: Fundamentals of engineering thermodynamics, John Wiley & Sons, 2000
- 6. R.E. Sonntag, C. Borgnakke, G.J. Van Wylen, Fundamentals of Thermodynamics, 6th Edition, John Wiley & Sons, 2003

^{*)} in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

- 7. Shavit A., Gutfinger C., Thermodynamics: From Concepts to Applications, CRC Press, 2008
- 8. Engel T., Reid P., Thermodynamics, Statistical Thermodynamics, & Kinetics, Benjamin Cummings, 2006

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

prof. dr hab. inż. Andrzej Bogusławski, andrzej.boguslawski@pcz.pl